• 제목/요약/키워드: Quantitative real time RT-PCR

Search Result 303, Processing Time 0.022 seconds

Antiviral Properties of Probiotic Mixtures against Rotavirus in the Rat (랫드에서 로타바이러스에 대한 유산균혼합물의 항 바이러스활성)

  • Park, Jae Eun;Lee, Do Kyung;Kim, Min Ji;Kim, Kyung Tae;Choi, Kyung Soon;Seo, Jae Goo;Ha, Nam Joo
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.296-301
    • /
    • 2014
  • Rotavirus is a major cause of acute gastroenteritis in young children in developed and developing countries. The use of probiotics for the treatment of gastrointestinal diseases is both safe and easily accessible. In this study, we evaluated the anti-rotaviral activities of probiotic mixtures in a Sprague-Dawley rat. 24 litters with their dams were randomly assigned to four groups; placebo, phosphate buffered saline (PBS), and two probiotic mixture (PRO-1 and PRO-2) groups. All rats were inoculated with rotavirus at dose of 8 log plaque forming units per rat at 5 days old. Animals in the PRO-1 and PRO-2 groups were orally administered probiotic mixtures 1 or 2, respectively, at a dose of 8 log colony forming units daily during 4 days. For control purposes, placebo and PBS groups were orally administered the same amount of placebo (containing maltose and polydextrose) or PBS once daily for 4 days, respectively. Antiviral analysis was performed by real-time quantitative PCR (RT-qPCR) and observing intestinal villi. As a result, weights of small intestines were greater in the PRO-1, PRO-2 groups than in control groups. Villi were short and villous epithelial necrosis was exhibited in control groups, but these morphological changes were not observed in PRO-1, PRO-2 treated rats. RT-qPCR analysis showed that VP7 gene level of rotavirus in fecal samples and small intestinal epithelial cells were lower in the PRO-1 and PRO-2 groups. These findings suggest that probiotic mixtures may be useful probiotics for the treatment of or as alternative therapies for rotaviral gastroenteritis.

Real-Time RT-PCR on SAG1 and BAG1 Gene Expression during Stage Conversion in Immunosuppressed Mice Infected with Toxoplasma gondii Tehran Strain

  • Selseleh, Monavar;Modarressi, Mohammad Hossein;Mohebali, Mehdi;Shojaee, Saeedeh;Eshragian, Mohammad Reza;Selseleh, Mina;Azizi, Ebrahim;Keshavarz, Hossein
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.3
    • /
    • pp.199-205
    • /
    • 2012
  • Toxoplasmic encephalitis is caused by reactivation of bradyzoites to rapidly dividing tachyzoites of the apicomplexan parasite Toxoplasma gondii in immunocompromised hosts. Diagnosis of this life-threatening disease is problematic, because it is difficult to discriminate between these 2 stages. Toxoplasma PCR assays using gDNA as a template have been unable to discriminate between an increase or decrease in SAG1 and BAG1 expression between the active tachyzoite stage and the latent bradyzoite stage. In the present study, real-time RT-PCR assay was used to detect the expression of bradyzoite (BAG1)- and tachyzoite-specific genes (SAG1) during bradyzoite/tachyzoite stage conversion in mice infected with T. gondii Tehran strain after dexamethasone sodium phosphate (DXM) administration. The conversion reaction was observed in the lungs and brain tissues of experimental mice, indicated by SAG1 expression at day 6 after DXM administration, and continued until day 14. Bradyzoites were also detected in both organs throughout the study; however, it decreased at day 14 significantly. It is suggested that during the reactivation period, bradyzoites not only escape from the cysts and reinvade neighboring cells as tachyzoites, but also converted to new bradyzoites. In summary, the real-time RT-PCR assay provided a reliable, fast, and quantitative way of detecting T. gondii reactivation in an animal model. Thus, this method may be useful for diagnosing stage conversion in clinical specimens of immunocompromised patients (HIV or transplant patients) for early identification of tachyzoite-bradyzoite stage conversion.

A LuxR-type Transcriptional Regulator, PsyR, Coordinates Regulation of Pathogenesis-related Genes in Pseudomonas syringae pv. tabaci (Pseudomonas syringae pv. tabaci 에서 LuxR-type 전사조절자인 PsyR에 의한 병원성 유전자들의 조절)

  • Choi, Yeon Hee;Lee, Jun Seung;Yun, Sora;Baik, Hyung Suk
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.136-150
    • /
    • 2015
  • Pseudomonas syringae pathovar tabaci is a plant pathogenic bacterium that causes wildfire disease in tobacco plants. In P. syringae pv. tabaci, PsyI, a LuxI-type protein, acts as an AHL synthase, while primary and secondary sequence analysis of PsyR has revealed that it is a homolog of the LuxR-type transcriptional regulator that responds to AHL molecules. In this study, using phenotypic and genetic analyses in P. syringae pv. tabaci, we show the effect of PsyR protein as a quorum-sensing (QS) transcriptional regulator. Regulatory effects of PsyR on swarming motility and production of siderophores, tabtoxin, and N-acyl homoserine lactones were examined via phenotypic assays, and confirmed by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Further qRT-PCR showed that PsyR regulates expression of these virulence genes in response to environmental signals. However, an upstream region of the gene was not bound with purified MBP-PsyR protein; rather, PsyR was only able to shift the upstream region of psyI. These results suggested that PsyR may be indirectly controlled via intermediate-regulatory systems and that auto-regulation by PsyR does not occur.

Drug Resistance Effects of Ribosomal Protein L24 Overexpression in Hepatocellular Carcinoma HepG2 Cells

  • Guo, Yong-Li;Kong, Qing-Sheng;Liu, Hong-Sheng;Tan, Wen-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9853-9857
    • /
    • 2014
  • Background: The morbidity and mortality rate of liver cancer continues to rise in China and advanced cases respond poorly to chemotherapy. Ribosomal protein L24 has been reported to be a potential therapeutic target whose depletion or acetylation inhibits polysome assembly and cell growth of cancer. Materials and Methods: Total RNA of cultured amycin-resistant and susceptible HepG2 cells was isolated, and real time quantitative RT-PCR were used to indicate differences between amycin-resistant and susceptible strains of HepG2 cells. Viability assays were used to determine amycin resistance in RPL24 transfected and control vector and null-transfected HepG2 cell lines. Results: The ribosomal protein L24 transcription level was 7.7 times higher in the drug-resistant HepG2 cells as compared to susceptible cells on quantitative RT-PCR analysis. This was associated with enhanced drug resistance as determined by methyl tritiated thymidine (3H-TdR) incorporation. Conclusions: The ribosomal protein L24 gene may have effects on drug resistance mechanisms in hepatocellular carcinoma HepG2 cells.

Gene Expression Analysis of Pregnant Specific Stage in the Miniature Pig Ovary

  • Yun, Seong-Jo;Noh, Won-Gun;Yoon, Jong-Taek;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • v.33 no.4
    • /
    • pp.249-255
    • /
    • 2009
  • The miniature pig is considered to be a better organ donor breed for xenotransplantation than other pig breeds because the size of the organs of the miniature pig is similar to that of humans. In this study, we aimed at identifying differentially expressed genes in the miniature pig ovary during pregnancy. For this, we used the miniature pig ovary model, annealing control primer-based reverse transcription polymerase chain reaction (PCR), quantitative real-time PCR (qRT-PCR), and northern blotting analysis. We identified 13 genes showing differential expression on the based of pregnancy status and validated 8 genes using qRT-PCR. We also sequenced the full-length cDNA of ephrin receptor A4 (EphA4), which had a significant difference in expression level, and validated it by northern blotting. These genes may provide a better understanding of the cellular and molecular mechanisms during pregnancy in miniature pig ovary.

The Genes Expression Patterns Induced by High Temperature in Licorice (Glycyrrhiza uralensis F.) (온도상승에 따른 감초(Glycyrrhiza uralensis Fisch.)의 유전자 발현 양상)

  • Hyeju Seong;Woosuk Jung
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.56-56
    • /
    • 2020
  • 감초는 다년생 콩과(Leguminocae) 식물로 국내에서 시중가격이 높은 만주감초가 일부 재배되고 있다. 우리나라에서 감초 재배법이 불완전한 상황에서 한반도의 기후변화에 의한 온도 상승은 약용작물의 생산 및 품질에 많은 영향을 미칠 것으로 예상되므로 본 연구에서는 재배환경 중 온도 조건만 조절할 수 있는 온도구배터널(temperature gradient tunnel system)을 이용하여 4개의 T1(외기온도+0.5~1.3℃), T2(+1.3~2.2℃), T3(+2.2~3.2℃), T4(+3.2~4.0℃) 처리로 온도구배 하여 4년생 만주감초(Glycyrrhiza uralensis F.)를 재배하였다. 지하부가 오래된 모주와 신초1의 경우 저온(T1)과 중간구간(T2, T3)에서 초장과 총화수가 우세하였고, 번식이 가장 늦은 신초2의 경우 중간구간(T2, T3)에서의 생육 및 개화반응이 뚜렷했다. 각 온도처리구마다 3개의 감초 개체를 선발하여 모주의 정단으로부터 5개의 성엽을 채취하였다. Reverse transcription quantitative PCR (RT-qPCR)은 AccuPower® GreenStarTM RT-qPCR Master Mix (Bioneer, Korea)를 이용하여 진행되었다. Primer 디자인은 NCBI Primer-blast 프로그램을 사용해 제작하였고 ABI StepOne real time system (Applied Biosystem)의 melting curve analysis에서 one-peak test를 통해 gene specific primer임을 확인하였다. 각 온도처리구의 감초 잎에서 RNA를 추출하였고, RT-qPCR을 통해 감초의 유전자 발현양상을 비교, 분석하였다. Phytochrome interacting factor 4 (PIF4)는 식물 호르몬을 유발하는 전사조절을 조정함으로써 고온 신호전달에 핵심적인 역할을 수행한다. 활성화된 Phytochrome B(PhyB)는 PIF4의 활성을 억제한다고 알려졌다. Eukaryotic initiation factors(eIFs)는 mRNA 번역 개시인자로 유전자 발현과 특정 단백질 생산을 조절하는 역할을 한다. 본 결과는 온도조건에서 반응하는 생리적 변화를 전사체 수준에서 조사 분석하여 생리해석의 기초자료로 활용, 국내 감초 재배를 위한 환경조건 구명 및 적지 선정 기초자료로서 활용을 기대한다.

  • PDF

Anti-inflammatory Effects of Extracts and Their Solvent Fractions of Rice Wine Lees (주박 추출물과 이들의 유기용매 분획물에 의한 항염증 활성)

  • Park, Mi-Jeong;Kang, Hyung-Taek;Kim, Mi-Sun;Shin, Woo-Chang;Sohn, Ho-Yong;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.843-850
    • /
    • 2014
  • In the current study, we prepared eighty-five different kinds of solvent fractions of rice wine lees and nuruk extracts and investigated their effects on cell viability and nitric oxide (NO) production in mouse RAW 264.7 cells. Among the treated solvent fractions, only three solvent fractions (KSD-E1-3, KSD-E2-3 and KSD-E4-3) significantly decreased NO production in LPS-activated RAW 264.7 cells without affecting cell viability. And, they also reduced the expression of pro-inflammatory genes such as COX-2, TNF-alpha and iNOS. To understand the molecular mechanisms involved in the inhibition of inflammation in (KSD-E4-3)-treated RAW 264.7 cells, we carried out oligo DNA microarray analysis using Agilent Mouse microarray. To confirm microarray data, 6 genes (IL-1F6, iNOS, IL-10, Fabp4, IL-1RN and CSF2) were selected and performed RT-PCR and quantitative real-time PCR analysis with gene specific primers. The results of RT-PCR and real-time PCR agreed with microarray data. Overall, our results suggest that rice wine lees can be a novel resource for the development of foods and drugs which possess anti-inflammatory activity.

Effect of Tetrodotoxin on the Proliferation and Gene Expression of Human SW620 Colorectal Cancer Cells

  • Bae, Yun-Ho;Kim, Hun;Lee, Sung-Jin
    • Biomedical Science Letters
    • /
    • v.28 no.1
    • /
    • pp.42-49
    • /
    • 2022
  • Tetrodotoxin (TTX) is a natural neurotoxin found in several species of puffer fish belonging to Tetraodon fugu genus and has been reported to affect processes such as proliferation, metastasis and invasion of various cancer cells. However, it was not revealed which genes were influenced by these reactions. In this experiment, it was examined in human SW620 colorectal cancer cells. The proliferation of SW620 cells was significantly reduced when treated with 0, 1, 10 and 100 μM TTX for 48 h. It was confirmed using Annexin V-propidium iodide staining that some apoptosis was induced. Differentially expressed genes (DEGs) affecting cell proliferation through RNA sequencing (RNA-seq) were selected. The expression change of DEGs was confirmed by conducting quantitative real-time polymerase chain reaction (qRT-PCR). As a result, the mRNA expression of FOS and WDR48 genes was found to be increased in the 100 μM TTX treatment group compared to the control group. On the other hand, the mRNA expression of ALKBH7, NDUFA13, RIPPLY3 and SELENOM genes was found to be reduced, and in the case of the ALKBH7 gene was identified to show significant differences. This experiment suggests that TTX can be used as an important fundamental data to elucidate the mechanism that inhibits the proliferation of SW620 cells.

Identification of Differentially Expressed Genes by cDNA-AFLP in Magnaporthe oryzae

  • Chi, Myoung-Hwan;Park, Sook-Young
    • Research in Plant Disease
    • /
    • v.25 no.4
    • /
    • pp.205-212
    • /
    • 2019
  • Analysis of differentially expressed genes has assisted discovery of gene sets involved in particular biological processes. The purpose of this study was to identify genes involved in appressorium formation in the rice blast fungus Magnaporthe oryzae via analysis of cDNA-amplified fragment length polymorphisms. Amplification of appressorial and vegetative mycelial cDNAs using 28 primer combinations generated over 200 differentially expressed transcript-derived fragments (TDFs). TDFs were excised from gels, re-amplified by PCR, cloned, and sequenced. Forty-four of 52 clones analyzed corresponded to 42 genes. Quantitative real-time PCR showed that expression of 23 genes was up-regulated during appressorium formation, one of which was the MCK1 gene that had been shown to be involved in appressorium formation. This study will be providing valuable resources for identifying the genes such as pathogenicity-related genes in M. oryzae.