Browse > Article
http://dx.doi.org/10.5352/JLS.2015.25.2.136

A LuxR-type Transcriptional Regulator, PsyR, Coordinates Regulation of Pathogenesis-related Genes in Pseudomonas syringae pv. tabaci  

Choi, Yeon Hee (Department of Microbiology, College of Natural Science, Pusan National University)
Lee, Jun Seung (Department of Microbiology, College of Natural Science, Pusan National University)
Yun, Sora (Department of Microbiology, College of Natural Science, Pusan National University)
Baik, Hyung Suk (Department of Microbiology, College of Natural Science, Pusan National University)
Publication Information
Journal of Life Science / v.25, no.2, 2015 , pp. 136-150 More about this Journal
Abstract
Pseudomonas syringae pathovar tabaci is a plant pathogenic bacterium that causes wildfire disease in tobacco plants. In P. syringae pv. tabaci, PsyI, a LuxI-type protein, acts as an AHL synthase, while primary and secondary sequence analysis of PsyR has revealed that it is a homolog of the LuxR-type transcriptional regulator that responds to AHL molecules. In this study, using phenotypic and genetic analyses in P. syringae pv. tabaci, we show the effect of PsyR protein as a quorum-sensing (QS) transcriptional regulator. Regulatory effects of PsyR on swarming motility and production of siderophores, tabtoxin, and N-acyl homoserine lactones were examined via phenotypic assays, and confirmed by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Further qRT-PCR showed that PsyR regulates expression of these virulence genes in response to environmental signals. However, an upstream region of the gene was not bound with purified MBP-PsyR protein; rather, PsyR was only able to shift the upstream region of psyI. These results suggested that PsyR may be indirectly controlled via intermediate-regulatory systems and that auto-regulation by PsyR does not occur.
Keywords
Electrophoretic mobility shift assay (EMSA); MBP-psyR expression; Pseudomonas syringae; Quorum sensing; Real-time reverse transcription-polymerase chain reaction (qRT-PCR);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Allen, S. S. and McMurray, D. N. 2003. Coordinate cytokine gene expression in vivo following induction of tuberculous pleurisy in guinea pigs. Infect. Immun. 71, 4271-4277.   DOI
2 Bertani, G. 1951. A method for detection of mutations, using streptomycin dependence in Escherichia coli. Genetics 36, 598-611.
3 Brito, B., Aldon, D., Barberis, P., Boucher, C. and Genin, S. 2002. A signal transfer system through three compartments transduces the plant cell contact-dependent signal controlling Ralstonia solanacearum hrp genes. Mol. Plant Microbe Interact. 15, 109-119.   DOI
4 Calderwood, S. B. and Mekalanos, J. J. 1987. Iron regulation of Shiga-like toxin expression in Escherichia coli is mediated by the fur locus. J. Bacteriol. 169, 4759-4764.
5 Camilli, A. and Bassler, B. L. 2006. Bacterial small-molecule signaling pathways. Science 311, 1113-1116.   DOI
6 Cha, J. Y., Lee, D. G., Lee, J. S., Oh, J. I. and Baik, H. S. 2012. GacA directly regulates expression of several virulence genes in Pseudomonas syringae pv. tabaci 11528. Biochem. Biophys. Res. Commun. 417, 665-672.   DOI
7 Cha, J. Y., Lee, J. S., Oh, J. I., Choi, J. W. and Baik, H. S. 2008. Functional analysis of the role of Fur in the virulence of Pseudomonas syringae pv. tabaci 11528: Fur controls expression of genes involved in quorum-sensing. Biochem. Biophys. Res. Commun. 366, 281-287.   DOI
8 Chatterjee, A., Cui, Y., Yang, H., Collmer, A., Alfano, J. R. and Chatterjee, A. K. 2003. GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators, and alternate sigma factors. Mol. Plant Microbe Interact. 16, 1106-1117.   DOI
9 Choi, S. H. and Greenberg, E. P. 1992. Genetic dissection of DNA binding and luminescence gene activation by the Vibrio fischeri LuxR protein. J. Bacteriol. 174, 4064-4069.
10 Deng, W. L., Rehm, A. H., Charkowski, A. O., Rojas, C. M. and Collmer, A. 2003. Pseudomonas syringae exchangeable effector loci: sequence diversity in representative pathovars and virulence function in P. syringae pv. syringae B728a. J. Bacteriol. 185, 2592-2602.   DOI
11 Ducros, V. M., Lewis, R. J., Verma, C. S., Dodson, E. J., Leonard, G., Turkenburg, J. P., Murshudov, G. N., Wilkinson, A. J. and Brannigan, J. A. 2001. Crystal structure of GerE, the ultimate transcriptional regulator of spore formation in Bacillus subtilis. J. Mol. Biol. 306, 759-771.   DOI
12 Genin, S., Brito, B., Denny, T. P. and Boucher, C. 2005. Control of the Ralstonia solanacearum Type III secretion system (Hrp) genes by the global virulence regulator PhcA. FEBS Lett. 579, 2077-2081.   DOI
13 Dulla, G., Marco, M., Quinones, B. and Lindow, S. 2005. A Closer Look at Pseudomonas syringae as a Leaf Colonist - The pathogen P. syringae thrives on healthy plants by employing quorum sensing, virulence factors, and other traits. Asm News 71, 469-475.
14 Fuqua, C. and Greenberg, E. P. 2002. Listening in on bacteria: Acyl-homoserine lactone signalling. Nat. Rev. Mol. Cell. Biol. 3, 685-695.   DOI
15 Fuqua, C., Parsek, M. R. and Greenberg, E. P. 2001. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35, 439-468.   DOI
16 Hauck, P., Thilmony, R. and He, S. Y. 2003. A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants. Proc. Natl. Acad. Sci. USA 100, 8577-8582.   DOI
17 Hendrickson, E. L., Guevera, P., Penaloza-Vazquez, A., Shao, J., Bender, C. and Ausubel, F. M. 2000. Virulence of the phytopathogen Pseudomonas syringae pv. maculicola is rpoN dependent. J. Bacteriol. 182, 3498-3507.   DOI
18 Jin, Q., Thilmony, R., Zwiesler-Vollick, J. and He, S. Y. 2003. Type III protein secretion in Pseudomonas syringae. Microbes Infect. 5, 301-310.   DOI
19 Jing, D., Agnew, J., Patton, W. F., Hendrickson, J. and Beechem, J. M. 2003. A sensitive two-color electrophoretic mobility shift assay for detecting both nucleic acids and protein in gels. Proteomics 3, 1172-1180.   DOI
20 Keen, N. T., Tamaki, S., Kobayashi, D. and Trollinger, D. 1988. Improved Broad-Host-Range Plasmids for DNA Cloning in Gram-Negative Bacteria. Gene 70, 191-197.   DOI
21 Kim, J. and Park, W. 2013. Identification and characterization of genes regulated by AqsR, a LuxR-type regulator in Acinetobacter oleivorans DR1. Appl. Microbiol. Biotechnol. 97, 6967-6978.   DOI
22 King, E. O., Ward, M. K. and Raney, D. E. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44, 301-307.
23 Lazdunski, A. M., Ventre, I. and Sturgis, J. N. 2004. Regulatory circuits and communication in Gram-negative bacteria. Nat. Rev. Microbiol. 2, 581-592.   DOI
24 Lee, J. S., Cha, J. Y. and Baik, H. S. 2011. Plant cell contactdependent virulence regulation of hrp genes in Pseudomonas syringae pv. tabaci 11528. J. Life Sci. 21, 227-234.   DOI
25 Lennox, E. S. 1955. Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1, 190-206.   DOI
26 Marenda, M., Brito, B., Callard, D., Genin, S., Barberis, P., Boucher, C. and Arlat, M. 1998. PrhA controls a novel regulatory pathway required for the specific induction of Ralstonia solanacearum hrp genes in the presence of plant cells. Mol. Microbiol. 27, 437-453.   DOI
27 Mey, A. R., Wyckoff, E. E., Kanukurthy, V., Fisher, C. R. and Payne, S. M. 2005. Iron and fur regulation in Vibrio cholerae and the role of fur in virulence. Infect. Immun. 73, 8167-8178.   DOI
28 Miller, M. B. and Bassler, B. L. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55, 165-199.   DOI
29 Nealson, K. H., Platt, T. and Hastings, J. W. 1970. Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 104, 313-322.
30 Nealson, K. H. and Hastings, J. W. 1979. Bacterial bioluminescence: its control and ecological significance. Microbiol. Rev. 43, 496-518.
31 Parsek, M. R. and Greenberg, E. P. 2000. Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc. Natl. Acad. Sci. USA 97, 8789-8793.   DOI
32 Pfaffl, M. W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45.   DOI   ScienceOn
33 Piper, K. R., Beck von Bodman, S. and Farrand, S. K. 1993. Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362, 448-450.   DOI
34 Prince, R. W., Storey, D. G., Vasil, A. I. and Vasil, M. L. 1991. Regulation of toxA and regA by the Escherichia coli fur gene and identification of a Fur homologue in Pseudomonas aeruginosa PA103 and PA01. Mol. Microbiol. 5, 2823-2831.   DOI
35 Pristovsek, P., Sengupta, K., Lohr, F., Schafer, B., von Trebra, M. W., Ruterjans, H. and Bernhard, F. 2003. Structural analysis of the DNA-binding domain of the Erwinia amylovora RcsB protein and its interaction with the RcsAB box. J. Biol. Chem. 278, 17752-17759.   DOI
36 Quinones, B., Dulla, G. and Lindow, S. E. 2005. Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol. Plant Microbe Interact. 18, 682-693.   DOI
37 Shaw, P. D., Ping, G., Daly, S. L., Cha, C., Cronan, J. E., Jr., Rinehart, K. L. and Farrand, S. K. 1997. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc. Natl. Acad. Sci. USA 94, 6036-6041.   DOI
38 Schwartz, T., Walter, S., Marten, S. M., Kirschhofer, F., Nusser, M. and Obst, U. 2007. Use of quantitative real-time RT-PCR to analyse the expression of some quorum-sensing regulated genes in Pseudomonas aeruginosa. Anal. Bioanal. Chem. 387, 513-521.   DOI
39 Schweizer, H. P. 1992. Allelic exchange in Pseudomonas aeruginosa using novel ColE1-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker. Mol. Microbiol. 6, 1195-1204.   DOI
40 Schwyn, B. and Neilands, J. B. 1987. Universal chemicalassay for the detection and determination of siderophores. Anal. Biochem. 160, 47-56.   DOI
41 Shaw, P. D., Ping, G., Daly, S. L., Cha, C., Cronan, J. E., Rinehart, K. L. and Farrand, S. K. 1997. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc. Natl. Acad. Sci. USA 94, 6036-6041.   DOI
42 Sircili, M. P., Walters, M., Trabulsi, L. R. and Sperandio, V. 2004. Modulation of enteropathogenic Escherichia coli virulence by quorum sensing. Infect. Immun. 72, 2329-2337.   DOI
43 Smith, R. S. and Iglewski, B. H. 2003. Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. J. Clin. Invest. 112, 1460-1465.   DOI
44 Watnick, P. I., Eto, T., Takahashi, H. and Calderwood, S. B. 1997. Purification of Vibrio cholerae fur and estimation of its intracellular abundance by antibody sandwich enzyme-linked immunosorbent assay. J. Bacteriol. 179, 243-247.
45 Thompson, D. K., Beliaev, A. S., Giometti, C. S., Tollaksen, S. L., Khare, T., Lies, D. P., Nealson, K. H., Lim, H., Yates, J., 3rd, Brandt, C. C., Tiedje, J. M. and Zhou, J. 2002. Transcriptional and proteomic analysis of a ferric uptake regulator (fur) mutant of Shewanella oneidensis: possible involvement of fur in energy metabolism, transcriptional regulation, and oxidative stress. Appl. Environ. Microbiol. 68, 881-892.   DOI
46 Ulrich, R. L., Deshazer, D., Brueggemann, E. E., Hines, H. B., Oyston, P. C. and Jeddeloh, J. A. 2004. Role of quorum sensing in the pathogenicity of Burkholderia pseudomallei. J. Med. Microbiol. 53, 1053-1064.   DOI
47 Von Bodman, S. B., Bauer, W. D. and Coplin, D. L. 2003. Quorum sensing in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 41, 455-482.   DOI
48 Wertheimer, A. M., Tolmasky, M. E., Actis, L. A. and Crosa, J. H. 1994. Structural and functional analyses of mutant Fur proteins with impaired regulatory function. J. Bacteriol. 176, 5116-5122.
49 Whitehead, N. A., Barnard, A. M., Slater, H., Simpson, N. J. and Salmond, G. P. 2001. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 25, 365-404.   DOI
50 Withers, H., Swift, S. and Williams, P. 2001. Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria. Curr. Opin. Microbiol. 4, 186-193.   DOI   ScienceOn
51 Zhang, R. G., Pappas, K. M., Brace, J. L., Miller, P. C., Oulmassov, T., Molyneaux, J. M., Anderson, J. C., Bashkin, J. K., Winans, S. C. and Joachimiak, A. 2002. Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417, 971-974.   DOI
52 Yang, H. J., Lee, J. S., Cha, J. Y. and Baik, H. S. 2011. Negative regulation of pathogenesis in Pseudomonas syringae pv. tabaci 11528 by ATP-dependent Lon protease. Mol. Cells 32, 317-323.   DOI