DOI QR코드

DOI QR Code

Antiviral Properties of Probiotic Mixtures against Rotavirus in the Rat

랫드에서 로타바이러스에 대한 유산균혼합물의 항 바이러스활성

  • Received : 2014.09.05
  • Accepted : 2014.12.11
  • Published : 2014.12.31

Abstract

Rotavirus is a major cause of acute gastroenteritis in young children in developed and developing countries. The use of probiotics for the treatment of gastrointestinal diseases is both safe and easily accessible. In this study, we evaluated the anti-rotaviral activities of probiotic mixtures in a Sprague-Dawley rat. 24 litters with their dams were randomly assigned to four groups; placebo, phosphate buffered saline (PBS), and two probiotic mixture (PRO-1 and PRO-2) groups. All rats were inoculated with rotavirus at dose of 8 log plaque forming units per rat at 5 days old. Animals in the PRO-1 and PRO-2 groups were orally administered probiotic mixtures 1 or 2, respectively, at a dose of 8 log colony forming units daily during 4 days. For control purposes, placebo and PBS groups were orally administered the same amount of placebo (containing maltose and polydextrose) or PBS once daily for 4 days, respectively. Antiviral analysis was performed by real-time quantitative PCR (RT-qPCR) and observing intestinal villi. As a result, weights of small intestines were greater in the PRO-1, PRO-2 groups than in control groups. Villi were short and villous epithelial necrosis was exhibited in control groups, but these morphological changes were not observed in PRO-1, PRO-2 treated rats. RT-qPCR analysis showed that VP7 gene level of rotavirus in fecal samples and small intestinal epithelial cells were lower in the PRO-1 and PRO-2 groups. These findings suggest that probiotic mixtures may be useful probiotics for the treatment of or as alternative therapies for rotaviral gastroenteritis.

로타바이러스는 선진국과 개발도상국의 영 유아에게 급성위장염을 일으키는 주요원인이다. 위장질환의 치료를 위한 유산균의 사용은 안전하며 간단하게 이용할 수 있다. 본 연구는 Sprague-Dawley 랫드에서 유산균혼합물의 로타바이러스에 대한 항 바이러스 효능을 조사하였다. 24마리의 새끼와 그들의 어미를 무작위로 네 그룹으로 나누었다; placebo, phosphate buffered saline (PBS)와 유산균 혼합물-1, 유산균 혼합물-2 그룹. 5일령인 모든 랫드에게 8 log plaque forming units의 농도로 로타바이러스를 접종하고 유산균혼합물-1, 유산균 혼합물-2 그룹은 4일 동안 하루에 한번 각각 8 log colony forming units의 농도로 유산균 혼합물을 경구 투여하였다. 대조군인 placebo와 PBS 그룹은 4일 동안 하루에 한번 각각 동일한 양의 placebo (말토오스, 폴리덱스트로스 포함)와 PBS를 경구 투여하였다. 항 바이러스 효능분석을 위해 Real-time quantitative PCR (RT-qPCR)과 소장융모관찰을 수행하였으며, 그 결과 유산균 혼합물-1, 유산균 혼합물-2 그룹의 소장무게는 대조군 보다 무거웠다. 대조군의 융모는 길이가 짧아지고 융모상피세포의 괴사가 일어났지만 유산균 혼합물-1과 유산균 혼합물-2 그룹에서는 이러한 형태학적 변화를 관찰할 수 없었다. RT-qPCR 분석에서는 유산균 혼합물-1과 유산균 혼합물-2 그룹의 분변샘플과 소장상피세포에서 로타바이러스의 VP7 유전자 레벨이 낮았다. 이러한 연구결과는 유산균혼합물이 로타바이러스 위장염에 대한 대체요법이나 치료에 유용하게 사용될 수 있음을 시사한다.

Keywords

References

  1. An, H.M., Park, S.Y., Lee, D.K., Kim, J.R., Cha, M.K., Lee, S.W., Lim, H.T., Kim, K.J., and Ha, N.J. 2011. Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats. Lipids Health Dis. 10, 116. https://doi.org/10.1186/1476-511X-10-116
  2. Bae, E.A., Han, M.J., Song, M.J., and Kim, D.H. 2002. Purification of rotavirus infection-inhibitory protein from Bifidobacterium breve K-110. Microbiol. Biotechnol. 12, 553-556.
  3. Bested, A.C., Logan, A.C., and Selhub, E.M. 2013. Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: Part II - contemporary contextual research. Gut Pathog. 5, 3. https://doi.org/10.1186/1757-4749-5-3
  4. Bixquert Jimenez, M. 2009. Treatment of irritable bowel syndrome with probiotics. An etropathogenic approach at last?. Rev. Esp. Enferm. Dig. 101, 553-564.
  5. Butel, M.J. 2013. Probiotics, gut microbiota and health. Med. Mal. Infect. 44, 1-8.
  6. Canaani, R.B., Cirillo, P., Terrin, G., Cesarano, L., Spagnuolo, M.I., De, Vincenzo, A., Albano, F., Passariello, A., De, Marco, G., Manguso, F., and et al. 2007. Probiotics for treatment of acute diarrhoea in children: randomised clinical trial of five different preparations. BMJ 335, 340. https://doi.org/10.1136/bmj.39272.581736.55
  7. Cha, K.J., Yu, D.Y., Lee, C.K., and Yu, J.H. 1999. Effect of bovine and human Lactoferrin on MA104 cell infected with human rotavirus. J. Kor. Soc. Virol. 29, 87-97.
  8. Chandra, R.K. 2002. Effect of Lactobacillus on the incidence and severity of acute rotavirus diarrhea in infants: a prospective placebo-controlled double-blind study. Nutr. Res. 22, 65-69. https://doi.org/10.1016/S0271-5317(01)00367-0
  9. Colbere-Garapin, F., Martin-Latil, S., Blondel, B., Mousson, L., Pelletier, I., Autret, A., Francois, A., Niborski, V., Grompone, G., Catonnet, G., and et al. 2007. Prevention and treatment of enteric viral infections: possible benefits of probiotic bacteria. Microbes Infect. 9, 1623-1631. https://doi.org/10.1016/j.micinf.2007.09.016
  10. Collado, M.C., Laparra, J.M., Frias, R., Lee, Y.K., Salminen, S., Lim, A., and Tan, H.M. 2009. Role of Probiotics in Health and Diseases, pp. 441-443. In Lee, Y.K. and Salminen, S. (eds.), Handbook of probiotics, 2nd ed. John Wiley &Sons, New Jersey, USA.
  11. Davidson, G.P., Bishop, R.F., Townley, R.R., and Holmes, I.H. 1975. Importance of a new virus in acute sporadic enteritis in children. Lancet 1, 242-246.
  12. Dykstra, N.S., Hyde, L., Adawi, D., Kulik, D., Ahrne, S., Molin, G., Jeppsson, B., Mackenzie, A., and Mack, D.R. 2011. Pulse probiotic administration induces repeated small intestinal Muc3 expression in rats. Pediatr. Res. 69, 206-211. https://doi.org/10.1203/PDR.0b013e3182096ff0
  13. Guandalini, S., Pensabene, L., Zikri, M.A., Dias, J.A., Casali, L.G., Hoekstra, H., Kolacek, S., Massar, K., Micetic-Turk, D., Papadopoulou, A., and et al. 2000. Lactobacillus GG administered in oral rehydration solution to children with acute diarrhea: a multicenter European trial. J. Pediatr. Gastroenterol. Nutr. 30, 54-60. https://doi.org/10.1097/00005176-200001000-00018
  14. Huber, A.C., Yolken, R.H., Mader, L.C., Strandberg, J.D., and Vonderfecht, S.L. 1989. Pathology of infectious diarrhea of infant rats (IDIR) induced by an antigenically distinct rotavirus. Vet. Pathol. 26, 376-385. https://doi.org/10.1177/030098588902600503
  15. Kapikian, A.Z., Kim, H.W., Wyatt, R.G., Cline, W.L., Arrobio, J.O., Brandt, C.D., Rodriguez, W.J., Sack, D.A., Chanock, R.M., and Parrott, R.H. 1976. Human reovirus-like agent as the major pathogen associated with "winter" gastroenteritis in hospitalized infants and young children. N. Engl. J. Med. 294, 965-972. https://doi.org/10.1056/NEJM197604292941801
  16. Kotzampassi, K. and Giamarellos-Bourboulis, E.J. 2012. Probiotics for infectious diseases: more drugs, less dietary supplementation. Int. J. Antimicrob. Agents 40, 288-296. https://doi.org/10.1016/j.ijantimicag.2012.06.006
  17. Lee, do.K., Park, S.Y., Jang, S., Baek, E.H., Kim, M.J., Huh, S.M., Choi, K.S., Chung, M.J., Kim, J.E., Lee, K.O., and et al. 2011. The combination of mixed lactic acid bacteria and dietary fiber lowers serum cholesterol levels and fecal harmful enzyme activities in rats. Arch. Pharm. Res. 34, 23-29. https://doi.org/10.1007/s12272-011-0102-7
  18. Li, D., Gu, A.Z., Yang, W., He, M., Hu, X.H., and Shi, H.C. 2010. An intergrated cell culture and reverse transcription quantitative PCR assay for detection of infectious rotaviruses in environmental waters. J. Microbiol. Methods 82, 59-63. https://doi.org/10.1016/j.mimet.2010.04.003
  19. Lin, M.Y. and Chang, F.J. 2000. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Dig. Dis. Sic. 45, 1617-1622. https://doi.org/10.1023/A:1005577330695
  20. Livak, K.J. and Schmittgen, T.D. 2001. Analysis of relative gene expression data using real time quantitative PCR and the 2-DDCT method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  21. Majamaa, H., Isolauri, E., Saxelin, M., and Vesikari, T. 1995. Lactic acid bacteria in the treatment of acute rotavirus gastroenteritis. J. Pediatr. Gastroenterol. Nutr. 20, 333-338. https://doi.org/10.1097/00005176-199504000-00012
  22. Moon, H.H., Kim, D.S., Park, S.H., and Kim, H.M. 2012. Clinical characteristics and genotype of rotavirus infection in newborn infants. Kor. J. Perinatol. 23, 226-272.
  23. Nybom, S.M., Collado, M.C., Surono, I.S., Salminen, S.J., and Meriluoto, J.A. 2008. Effect of glucose in removal of microcystin-LR by viable commercial probiotic strains and strains isolated from dadih fermented milk. J. Agric. Food Chem. 56, 3714-3720. https://doi.org/10.1021/jf071835x
  24. Pang, X.L., Lee, B., Boroumand, N., Leblanc, B., Preiksaitis, J.K., and Yu Ip, C.C. 2004. Increased detection of rotavirus using a real time reverse transcription- polymerase chain reation (RT-PCR) assay in stool specimens from children with diarrhea. J. Med. Virol. 72, 496-501. https://doi.org/10.1002/jmv.20009
  25. Picard, C., Fioramonti, J., Francois, A., Robinson, T., Neant, F., and Matuchansky, C. 2005. Review article: bifidobacteria as probiotic agents - physiological effects and clinical benefits. Aliment. Pharmacol. Ther. 22, 495-512. https://doi.org/10.1111/j.1365-2036.2005.02615.x
  26. Rautava, S. 2007. Potential uses of probiotics in the neonate. Semin. Fetal Neonatal. Med. 12, 45-53. https://doi.org/10.1016/j.siny.2006.10.006
  27. Richardson, M.A., Iwamoto, A., Ikegami, N., Nomoto, A., and Furuichi, Y. 1984. Nucleotide sequence of the gene encoding the serotype-specific antigen of human (Wa) rotavirus: comparison with the homologous genes from simian SA11 and UK bovine rotaviruses. J. Virol. 51, 860-862.
  28. Rossen, J.W., Bouma, J., Raatqeep, R.H., Buller, H.A., and Einerhand, A. 2004. Inhibition of cyclooxygenase activity reduces rotavirus infection at a post binding step. J. Virol. 78, 9721-9730. https://doi.org/10.1128/JVI.78.18.9721-9730.2004
  29. Salim, A.F., Phillips, A.D., Walker-Smith, J.A., and Farthing, M.J. 1995. Sequential changes in small intestinal structure and function during rotavirus infection in neonatal rats. Gut 36, 231-238. https://doi.org/10.1136/gut.36.2.231
  30. Schell, M.A., Karmirantzou, M., Snel, B., Vilanova, D., Berger, B., Pessi, G., Zwahlen, M.C., Desiere, F., Bork, P., Delley, M., and et al. 2002. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl. Acad. Sci. USA 99, 14422-14427. https://doi.org/10.1073/pnas.212527599
  31. Schwarz, B.A., Bange, R., Vahlenkamp, T.W., Johne, R., and Muller, H. 2002. Detection and quantitation of group A rotaviruses by competitive and real-time reverse transcription-polymerase chain reaction. J. Virol. Methods 105, 277-285. https://doi.org/10.1016/S0166-0934(02)00118-0
  32. Shornikova, A.V., Casas, I.A., Isolauri, E., Mykkanen, H., and Vesikari, T. 1997. Lactobacillus reuteri as a therapeutic agent in acute diarrhea in young children. J. Pediatr. Gastroenterol. Nutr. 24, 399-404. https://doi.org/10.1097/00005176-199704000-00008
  33. Shu, Q., Qu, F., and Gill, H.S. 2001. Probiotic treatment using Bifidobacterium lactis HN019 reduces weanling diarrhea associated with rotavirus and Escherichia coli infection in a piglet model. J. Pediatr. Gastroenterol. Nutr. 33, 171-177. https://doi.org/10.1097/00005176-200108000-00014
  34. Simpson, E., Wittet, S., Bonilla, J., Gamazina, K., Cooley, L., and Winkler, J.L. 2007. Use of formative research in developing a knowledge translation approach to rotavirus vaccine introduction in developing countries. BMC Public Health 7, 281. https://doi.org/10.1186/1471-2458-7-281
  35. Surendran, S. 2008. Rotavirus infection molecular changes and pathophysiology. EXCLI J. 7, 154-162.
  36. Srutkova, D., Spanova, A., Spano, M., Drab, V., Schwarzer, M., Kozakova, H., and Rittich, B. 2011. Efficiency of PCR-based methods in discriminating Bifidobacterium longum ssp. Longum and Bifidobacterium longum ssp. Infantis strains of human origin. J. Microbiol. Methods 87, 10-16. https://doi.org/10.1016/j.mimet.2011.06.014
  37. Vanderhoof, J.A., Whitney, D.B., Antonson, D.L., Hanner, T.L., Lupo, J.V., and Young, R.J. 1999. Lactobacillus GG in the prevention of antibiotic-associated diarrhea in children. J. Pediatr. 135, 564-568. https://doi.org/10.1016/S0022-3476(99)70053-3
  38. Ventola, H., Lehtoranta, L., Madetoja, M., Simonen-Tikka, M.L., Maunula, L., Roivainen, M., Korpela, R., and Holma, R. 2012. Effects of the viability of Lactobacillus rhamnosus GG on rotavirus infection in neonatal rats. World J. Gastroenterol. 18, 5925-5931. https://doi.org/10.3748/wjg.v18.i41.5925
  39. Yang, H.J., Min, T.K., Lee, H.W., and Pyun, B.Y. 2014. Efficacy of probiotic therapy on atopic dermatitis in children: A randomized, double-blind, placebo-controlled trial. Allergy Asthma Immunol. Res. 6, 208-215. https://doi.org/10.4168/aair.2014.6.3.208
  40. Yeun, Y.G. and Lee, J.J. 2014. Effect of a double-coated probiotic formulation on functional constipation in the 1 elderly: a randomized, double blind, controlled study. Arch. Pharm. Res. (Article in press).
  41. Yuan, J., Zhu, L., Liu, X., Li, T., Zhang, Y., Ying, T., Wang, B., Wang, J., Dong, H., Feng, E., and et al. 2006. A proteome reference map and proteomic analysis of Bifidobacterium longum NCC2705. Mol. Cell. Proteomics 5, 1105-1118. https://doi.org/10.1074/mcp.M500410-MCP200