• 제목/요약/키워드: Quantitative parameters

검색결과 1,116건 처리시간 0.027초

Relationship between Quantitative Sonographic Measurements and Serum Biochemical Parameters in Childhood Obesity

  • Damar, Cagri;ISik, Emregul;Gungor, Sukru
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제24권5호
    • /
    • pp.470-482
    • /
    • 2021
  • Purpose: We investigated the relationship between sonographic measurements of fatty liver and body mass index standard deviation score (BMI-Z score), abdominal wall fat thickness (AWFT), and serum biochemical parameters in childhood obesity. Methods: Anthropometric, laboratory, and ultrasonography data were obtained from 174 children with BMI-Z score >1. After the qualitative grading of hepatosteatosis (grades 0-3), the quantitative liver-kidney echogenicity ratio (LKER) was calculated using a software tool. Groups according to sex, age (AG-I to AG-III), BMI-Z score (BMG-I to BMG-III), and hepatosteatosis degree (HS-I and HS-II) were formed. The differences and distributions of the variables were statistically analyzed and compared among the groups. Results: Serum transaminase and glucose levels showed a positive correlation with LKER, whereas the HDL level showed a negative correlation. BMI-Z score and AWFT showed a positive correlation with fasting insulin level and HOMA-IR value. LKER was significantly higher in girls than in boys (p=0.008). In the AG-I group (age 3-8.9 years), the BMI-Z score was significantly higher, whereas AWFT was significantly lower than in the other age groups (p<0.001). The cutoff point of LKER for predicting grade 2 or higher steatosis (HS-II group) was determined to be 1.83. Cardiovascular disease risk was significantly higher in the HS-II group (p=0.035). Conclusion: As a valuable quantitative measurement tool, LKER can be used for the sonographic screening of fatty liver. AWFT, on the basis of its correlation with fasting insulin level and HOMA-IR value, may be a useful sonographic parameter in the management of childhood obesity.

뇌파 신호의 정량적 분석을 위한 데이터 정규화 및 표현기법 연구 (Study on Data Normalization and Representation for Quantitative Analysis of EEG Signals)

  • 황태훈;김진헌
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제9권6호
    • /
    • pp.729-738
    • /
    • 2019
  • 최근 화두가 되는 가상현실 분야와 감정인식 분야의 결합으로 감정을 정량적으로 분석하고, 분석된 결과를 바탕으로 가상현실 콘텐츠를 개선하는 접근이 시도되고 있다. 감정은 콘텐츠 체험자의 생체신호를 기반으로 분석되는데, 신호 분석 관점에서는 많은 연구가 이루어지고 있으나 이를 정량화하는 방법론에 관해서는 충분히 논의되지 않고 있다. 본 논문에서는 감정의 정량화를 위한 초석으로 여러 생체신호 중 뇌파 신호에 대한 정규화 함수 설계와 이를 나타내는 표현 기법을 제안하고자 한다. 정규화 함수의 최적 파라미터를 찾아내기 위해 무차별 대입법을 사용하였으며, 본 논문에서 정의한 True Score와 False Score를 사용하여 찾아낸 파라미터들의 신뢰성을 높였다. 결과적으로 경험에 의존되던 생체신호 정규화 함수의 파라미터 결정을 자동화할 수 있으며, 이를 바탕으로 감정의 정량적 분석이 가능하다.

지진동 모사를 통한 역사지진 규모와 진앙 평가 (Assessment of Historical Earthquake Magnitudes and Epicenters Using Ground Motion Simulations)

  • 김성룡;이상준
    • 한국지진공학회논문집
    • /
    • 제25권2호
    • /
    • pp.59-69
    • /
    • 2021
  • Historical records of earthquakes are generally used as a basis to extrapolate the instrumental earthquake catalog in time and space during the probabilistic seismic hazard analysis (PSHA). However, the historical catalogs' input parameters determined through historical descriptions rather than any quantitative measurements are accompanied by considerable uncertainty in PSHA. Therefore, quantitative assessment to verify the historical earthquake parameters is essential for refining the reliability of PSHA. This study presents an approach and its application to constrain reliable ranges of the magnitude and corresponding epicenter of historical earthquakes. First, ranges rather than specific values of ground motion intensities are estimated at multiple locations with distances between each other for selected historical earthquakes by reviewing observed co-seismic natural phenomena, structural damage levels, or felt areas described in their historical records. Based on specific objective criteria, this study selects only one earthquake (July 24, 1643), which is potentially one of the largest historical earthquakes. Then, ground motion simulations are performed for sufficiently broadly distributed epicenters, with a regular grid to prevent one from relying on strong assumptions. Calculated peak ground accelerations and velocities in areas with the historical descriptions on corresponding earthquakes are converted to intensities with an empirical ground motion-intensity conversion equation to compare them with historical descriptions. For the ground motion simulation, ground motion prediction equations and a frequency-wavenumber method are used to consider the effects of possible source mechanisms and stress drop. From these quantitative calculations, reliable ranges of epicenters and magnitudes and the trade-off between them are inferred for the earthquake that can conservatively match the upper and lower boundaries of intensity values from historical descriptions.

QbD6시그마 프로세스를 통한 D-항원 정량 시험법의 유효성과 동등성에 관한 연구 (A Study on the Efficacy and Equivalence of D-antigen Quantitative Analysis through QbD6sigma Process)

  • 김강희;김현정
    • 품질경영학회지
    • /
    • 제50권4호
    • /
    • pp.831-842
    • /
    • 2022
  • Purpose: This study carried out the Quality by Design (QbD)6σ process to verify the effectiveness and equivalence of the finished D-antigen quantitative test method, and compared the OFAT-based method validation and test result acceptance criteria with the Analytical Quality by Design (AQbD)-based method validation and test method. This is a study on how to reduce the risk of delay in permit change by increasing the reliability of permit data in the existing method by statistically analyzing the results. Methods: With the QbD6σ process, the effectiveness and equivalence of the D-antigen quantitative test method were verified with the data of the existing test method and the new test method. Results: Method validation tests are performed based on AQbD. Critical Method Parameters are identified through risk assessment, and single/combined actions are verified by designing and performing tests for Critical Method Parameters (analysis of variance, full factorial design method). Method validation can be effectively accomplished with the QbD6σ process. Conclusion: The use of QbD6σ can be used to achieve satisfactory results for both pharmaceutical companies and regulators by using appropriate statistical analytical methods for method validation as required by regulatory agencies.

Numerical Model for Cerebrovascular Hemodynamics with Indocyanine Green Fluorescence Videoangiography

  • Hwayeong Cheon;Young-Je Son;Sung Bae Park;Pyoung-Seop Shim;Joo-Hiuk Son;Hee-Jin Yang
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권4호
    • /
    • pp.382-392
    • /
    • 2023
  • Objective : The use of indocyanine green videoangiography (ICG-VA) to assess blood flow in the brain during cerebrovascular surgery has been increasing. Clinical studies on ICG-VA have predominantly focused on qualitative analysis. However, quantitative analysis numerical modelling for time profiling enables a more accurate evaluation of blood flow kinetics. In this study, we established a multiple exponential modified Gaussian (multi-EMG) model for quantitative ICG-VA to understand accurately the status of cerebral hemodynamics. Methods : We obtained clinical data of cerebral blood flow acquired the quantitative analysis ICG-VA during cerebrovascular surgery. Varied asymmetric peak functions were compared to find the most matching function form with clinical data by using a nonlinear regression algorithm. To verify the result of the nonlinear regression, the mode function was applied to various types of data. Results : The proposed multi-EMG model is well fitted to the clinical data. Because the primary parameters-growth and decay rates, and peak center and heights-of the model are characteristics of model function, they provide accurate reference values for assessing cerebral hemodynamics in various conditions. In addition, the primary parameters can be estimated on the curves with partially missed data. The accuracy of the model estimation was verified by a repeated curve fitting method using manipulation of missing data. Conclusion : The multi-EMG model can possibly serve as a universal model for cerebral hemodynamics in a comparison with other asymmetric peak functions. According to the results, the model can be helpful for clinical research assessment of cerebrovascular hemodynamics in a clinical setting.

Color Texture Analysis as a Tool for Quantitative Evaluation of Radiation-Induced Skin Injuries

  • Sung Young Lee;Jin Ho Kim;Ji Hyun Chang;Jong Min Park;Chang Heon Choi;Jung-in Kim;So-Yeon Park
    • Journal of Radiation Protection and Research
    • /
    • 제48권3호
    • /
    • pp.144-152
    • /
    • 2023
  • Background: Color texture analysis was applied as a tool for quantitative evaluation of radiation-induced skin injuries. Materials and Methods: We prospectively selected 20 breast cancer patients who underwent whole-breast radiotherapy after breast-conserving surgery. Color images of skin surfaces for irradiated breasts were obtained by using a mobile skin analyzer. The first skin measurement was performed before the first fraction of radiotherapy, and the subsequent measurement was conducted approximately 10 days after the completion of the entire series of radiotherapy sessions. For comparison, color images of the skin surface for the unirradiated breasts were measured similarly. For each color image, six co-occurrence matrices (red-green [RG], red-blue [RB], and green-blue [GB] from color channels, red [R], green [G], blue [B] from gray channels) can be generated. Four textural features (contrast, correlation, energy, and homogeneity) were calculated for each co-occurrence matrix. Finally, several statistical analyses were used to investigate the performance of the color textural parameters to objectively evaluate the radiation-induced skin damage. Results and Discussion: For the R channel from the gray channel, the differences in the values between the irradiated and unirradiated skin were larger than those of the G and B channels. In addition, for the RG and RB channels, where R was considered in the color channel, the differences were larger than those in the GB channel. When comparing the relative values between gray and color channels, the 'contrast' values for the RG and RB channels were approximately two times greater than those for the R channel for irradiated skin. In contrast, there were no noticeable differences for unirradiated skin. Conclusion: The utilization of color texture analysis has shown promising results in evaluating the severity of skin damage caused by radiation. All textural parameters of the RG and RB co-occurrence matrices could be potential indicators of the extent of skin damage caused by radiation.

Image Quality and Lesion Detectability of Lower-Dose Abdominopelvic CT Obtained Using Deep Learning Image Reconstruction

  • June Park;Jaeseung Shin;In Kyung Min;Heejin Bae;Yeo-Eun Kim;Yong Eun Chung
    • Korean Journal of Radiology
    • /
    • 제23권4호
    • /
    • pp.402-412
    • /
    • 2022
  • Objective: To evaluate the image quality and lesion detectability of lower-dose CT (LDCT) of the abdomen and pelvis obtained using a deep learning image reconstruction (DLIR) algorithm compared with those of standard-dose CT (SDCT) images. Materials and Methods: This retrospective study included 123 patients (mean age ± standard deviation, 63 ± 11 years; male:female, 70:53) who underwent contrast-enhanced abdominopelvic LDCT between May and August 2020 and had prior SDCT obtained using the same CT scanner within a year. LDCT images were reconstructed with hybrid iterative reconstruction (h-IR) and DLIR at medium and high strengths (DLIR-M and DLIR-H), while SDCT images were reconstructed with h-IR. For quantitative image quality analysis, image noise, signal-to-noise ratio, and contrast-to-noise ratio were measured in the liver, muscle, and aorta. Among the three different LDCT reconstruction algorithms, the one showing the smallest difference in quantitative parameters from those of SDCT images was selected for qualitative image quality analysis and lesion detectability evaluation. For qualitative analysis, overall image quality, image noise, image sharpness, image texture, and lesion conspicuity were graded using a 5-point scale by two radiologists. Observer performance in focal liver lesion detection was evaluated by comparing the jackknife free-response receiver operating characteristic figures-of-merit (FOM). Results: LDCT (35.1% dose reduction compared with SDCT) images obtained using DLIR-M showed similar quantitative measures to those of SDCT with h-IR images. All qualitative parameters of LDCT with DLIR-M images but image texture were similar to or significantly better than those of SDCT with h-IR images. The lesion detectability on LDCT with DLIR-M images was not significantly different from that of SDCT with h-IR images (reader-averaged FOM, 0.887 vs. 0.874, respectively; p = 0.581). Conclusion: Overall image quality and detectability of focal liver lesions is preserved in contrast-enhanced abdominopelvic LDCT obtained with DLIR-M relative to those in SDCT with h-IR.

작물 모형 개선을 위한 지역적응시험 자료의 정량적 품질 평가 (Quantitative Assessment of the Quality of Regional Adaptation Trial Data for Crop Model Improvement)

  • 현신우;서보훈;이석인;김광수
    • 한국농림기상학회지
    • /
    • 제22권3호
    • /
    • pp.194-204
    • /
    • 2020
  • 작물 모형의 품종에 따른 특성을 나타내는 품종 모수를 추정하기 위해서는 많은 양의 생육 관측 자료가 요구되며, 이를 확보하기 위해서는 많은 비용과 노력이 요구된다. 고품질 자료는 아니더라도 공개되어 있는 작물 생육 자료를 활용하여 모수 추정에 사용할 수 있으나, 이러한 자료의 품질에 대한 평가가 선행되어야 한다. 본 연구에서는 농업자료에 대한 정량적 평가 도구인 DatasetRanker를 사용하여 벼에 대한 지역적응시험 자료를 평가하였다. 또한, 결과를 바탕으로 자료의 품질을 개선하기 위한 관측체계의 개선방안을 제시하고자 하였다. 평가 결과 각각의 품종들은 모두 네 등급 중 세 번째로 높은 은 등급으로 평가되었으며, 더 상위의 등급을 얻지 못한 것은 대체로 생육 및 생육환경에 대한 관측자료의 부족에 기인하였다. 결과를 개선하기 위해서는 추가적인 관측자료가 요구되며, 일부 재배관리 등의 기본적인 조건들에 대한 정보를 추가하는 것만으로도 품질에 대한 평가 점수가 약 10%정도 상승할 것으로 예상되었다. 또한, 정확한 위치정보가 공개될 경우 이를 기준으로 수집되는 토양 정보와 기상 정보의 불확실성을 감소시킬 수 있을 것이다. 생육기간 중 시계열적인 관측자료가 수집된다면 품질이 상당히 개선될 것으로 예상되었으며, 이를 위한 연구가 지속적으로 이루어져야 할 것이다.

직접압연공정의 특성해석 및 공정변수 선정 (Characteristic Analysis and Selection of Process Parameters in Direct Rolling Processes)

  • 박영준;조형석;이원호;강태욱
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.384-388
    • /
    • 1997
  • Recently,direct rolling process has been drawing increasing interests because production cost be greatly reduced by eliminating subsequent hot rolling processes. Such a process has been characterized to prosuce thin steel strip (thickness 1~5mm) directly from molten metal and to skip over the conventional hot rolling processes. However, since there are several process parameters, which affect the quality of product,and their relationship between the parametersare very complex,it is therefore very difficult to realize the process design and the quality control. To overcome these difficulties quantitative relationship between the parameters are investigated through a numerical analysis. Form these results, it is found that solidification final point is the most important paramter which is critical to quality of the strip. Also,the multiple regression model is obtianed to determine their relationship from the solidification final point and roll separating force which can be easily estimated

  • PDF

콘크리트 중의 염소이온 확산 특성에 관한 실험적 연구 (A Experimental Study on the Chloride Diffusion Properties in Concrete)

  • 박승범;김도겸
    • 콘크리트학회논문집
    • /
    • 제12권1호
    • /
    • pp.33-44
    • /
    • 2000
  • Since the mechanism of chloride diffusion and its ratio in concrete depend on structural conditions and concrete as a micro-structure, if these are analyzed quantitatively, the long-term ageing of structures can be predicted. Although, a quantitative analysis of concrete micro-structure, in which the results are affected by various parameters, is very difficult, this can be done indirectly by the durability test of concrete. In this study, the compressive strength, void ratio and air permeability of concrete. In this study, the compressive strength, void ratio and air permeability of concrete are chosen as the parameters in concrete durability test, and these effects on test results are analysed according to changes of mixing properties. The relationships between parameters and chloride diffusion velocity is used for prediction models of chloride diffusion. The developed prediction models for the chloride diffusion according to mixing and physical properties, can be used to estimate the service life and corrosion initiation of reinforcing bars in marine structures.