• Title/Summary/Keyword: Quantitative method and Computer imaging analysis

Search Result 12, Processing Time 0.026 seconds

Quantitative Method of Rapid Immunochromatographic Assay Kit for HBsAg-screening using Computer Image Analysis (컴퓨터 상 분석을 이용한 HBsAg-screening용 Rapid Immunochromatographic Assay Kit의 정량적 측정법)

  • 신형순;허태련
    • KSBB Journal
    • /
    • v.15 no.3
    • /
    • pp.243-246
    • /
    • 2000
  • One of recent topics in the case of hepatits B virus(HVB) is the value of hepatitis B surface antigen(HBsAg) concentration as a prognostic maker. We developed uantitative method of rapid immunochromatographic assay(ICA) kit for HBsAg using computer image analysis (CIA) for the purpose of home diagnosis. uantitative ICA using CIA demonstrated integrated optical density(IOD) values proportional to log of reference HBsAg concentrations in the range of 2-200 ng/mL and enzyme-linked immunosorbent assay(ELISA) demonstrated the same in the range of 0.1-100 ng/mL however the test results with sample sear showed the same concentration on both kits. Furthermore repeated tests with the same samples revealed that this quantitative ICA using CIA would be reproducible and coefficient of variation(CV) of the results was 1.38~6.30%.

  • PDF

Convolutional Neural Network-Based Automatic Segmentation of Substantia Nigra on Nigrosome and Neuromelanin Sensitive MR Images

  • Kang, Junghwa;Kim, Hyeonha;Kim, Eunjin;Kim, Eunbi;Lee, Hyebin;Shin, Na-young;Nam, Yoonho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.3
    • /
    • pp.156-163
    • /
    • 2021
  • Recently, neuromelanin and nigrosome imaging techniques have been developed to evaluate the substantia nigra in Parkinson's disease. Previous studies have shown potential benefits of quantitative analysis of neuromelanin and nigrosome images in the substantia nigra, although visual assessments have been performed to evaluate structures in most studies. In this study, we investigate the potential of using deep learning based automatic region segmentation techniques for quantitative analysis of the substantia nigra. The deep convolutional neural network was trained to automatically segment substantia nigra regions on 3D nigrosome and neuromelanin sensitive MR images obtained from 30 subjects. With a 5-fold cross-validation, the mean calculated dice similarity coefficient between manual and deep learning was 0.70 ± 0.11. Although calculated dice similarity coefficients were relatively low due to empirically drawn margins, selected slices were overlapped for more than two slices of all subjects. Our results demonstrate that deep convolutional neural network-based method could provide reliable localization of substantia nigra regions on neuromelanin and nigrosome sensitive MR images.

Quantitative Analysis of Susceptibility Effects in TRFGE and CGE Sequences for Functional MRI (뇌기능 영상을 위한 TRFGE와 CGE 기법에서 자화율 효과의 정량적 해석)

  • 정순철;노용만;조장희
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.66-74
    • /
    • 1997
  • fMRI, functional MRI introduced receently appears based on the gradient echo technique which is sensitive to the field inhomogeneity developed due to the local susceptibility changes of blood oxygenation and deoxygenation. There has been many variants of the basic gradient echo sequence which is sensitive to the local inhomogeniety, among others such as GRASS or SSFP to EPISTAR are the most commonly used gradient echo techniques. Common to all these gradient echo techniques is that the signal due to the susceptibility effects is generally decreased with increasing inhomogeneity due to the $T2^{*}$ effect or conventionally konwn as blood oxygenation level dependent(BOLD) effect. It is, also found that the BOLD sensitivity is also dependent on the imaging modes, namely whether the imaging is in axial, or coronal or sagittal mode as well as the directions of the vessels against the main magnetic field. We have, therefore, launched a systematic study of imaging mode dependent signal change or BOLD sensitivity as well as the signal changes due tothe tilting angle of the imaging planes. Study has been made for both TRFGE sequence and CGE sequence to compare the distinctions of the each mode since each technique has different sensitivity againsst susceptibility effect. Method of computation and both the computer simulations and their corresponding experimental results are presented.

  • PDF

A feasibility study evaluating the relationship between dose and focal liver reaction in stereotactic ablative radiotherapy for liver cancer based on intensity change of Gd-EOB-DTPA-enhanced magnetic resonance images

  • Jung, Sang Hoon;Yu, Jeong Il;Park, Hee Chul;Lim, Do Hoon;Han, Youngyih
    • Radiation Oncology Journal
    • /
    • v.34 no.1
    • /
    • pp.64-75
    • /
    • 2016
  • Purpose: In order to evaluate the relationship between the dose to the liver parenchyma and focal liver reaction (FLR) after stereotactic ablative body radiotherapy (SABR), we suggest a novel method using a three-dimensional dose distribution and change in signal intensity of gadoxetate disodium-gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) hepatobiliary phase images. Materials and Methods: In our method, change of the signal intensity between the pretreatment and follow-up hepatobiliary phase images of Gd-EOB-DTPA-enhanced MRI was calculated and then threshold dose (TD) for developing FLR was obtained from correlation of dose with the change of the signal intensity. For validation of the method, TDs for six patients, who had been treated for liver cancer with SABR with 45-60 Gy in 3 fractions, were calculated using the method, and we evaluated concordance between volume enclosed by isodose of TD by the method and volume identified as FLR by a physician. Results: The dose to normal liver was correlated with change in signal intensity between pretreatment and follow-up MRI with a median $R^2$ of 0.935 (range, 0.748 to 0.985). The median TD by the method was 23.5 Gy (range, 18.3 to 39.4 Gy). The median value of concordance was 84.5% (range, 44.7% to 95.9%). Conclusion: Our method is capable of providing a quantitative evaluation of the relationship between dose and intensity changes on follow-up MRI, as well as determining individual TD for developing FLR. We expect our method to provide better information about the individual relationship between dose and FLR in radiotherapy for liver cancer.

Applying tilt mechanism for high-resolution image acquisition (고해상도 영상 획득을 위한 틸트 메커니즘 적용 기법)

  • Song, Chun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.31-37
    • /
    • 2014
  • In this paper, to compensate the degraded performance in high-resolution infrared sensor due to assembling error, the influence of each component was evaluated through the sensitivity analysis of lens assembly, axis mirror, and detector and also suggested detector tilt mechanism for compensation. 3 detector tilt mechanisms were investigated. The first one is 'Shim plate' method which is applying shim on installing plane. The second one is 'Tilting screw' method that is using tilt screw for adjusting detection plane. The last one is 'Micrometer head' method that is installing micrometer on detection plane and acquiring quantitative data. Based on the investigation result, 'Tilting screw' method was applied due to ease of user control, small volume, and real-time controllability, thereby we could acquire high-resolution infrared images. The research result shows that the tilting mechanism is necessary technology for the implementation of high-resolution infrared imaging system.

Assessment and Analysis of Fidelity and Diversity for GAN-based Medical Image Generative Model (GAN 기반 의료영상 생성 모델에 대한 품질 및 다양성 평가 및 분석)

  • Jang, Yoojin;Yoo, Jaejun;Hong, Helen
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.2
    • /
    • pp.11-19
    • /
    • 2022
  • Recently, various researches on medical image generation have been suggested, and it becomes crucial to accurately evaluate the quality and diversity of the generated medical images. For this purpose, the expert's visual turing test, feature distribution visualization, and quantitative evaluation through IS and FID are evaluated. However, there are few methods for quantitatively evaluating medical images in terms of fidelity and diversity. In this paper, images are generated by learning a chest CT dataset of non-small cell lung cancer patients through DCGAN and PGGAN generative models, and the performance of the two generative models are evaluated in terms of fidelity and diversity. The performance is quantitatively evaluated through IS and FID, which are one-dimensional score-based evaluation methods, and Precision and Recall, Improved Precision and Recall, which are two-dimensional score-based evaluation methods, and the characteristics and limitations of each evaluation method are also analyzed in medical imaging.

Comparison of Effectiveness about Image Quality and Scan Time According to Reconstruction Method in Bone SPECT (영상 재구성 방법에 따른 Bone SPECT 영상의 질과 검사시간에 대한 실효성 비교)

  • Kim, Woo-Hyun;Jung, Woo-Young;Lee, Ju-Young;Ryu, Jae-Kwang
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • Purpose: Nowadays in the nuclear medicine, many studies and efforts are being made to reduce the scan time, as well as the waiting time to be needed to execute exams after injection of radionuclide medicines. Several methods are being used in clinic, such as developing new radionuclide compounds that enable to be absorbed into target organs more quickly and reducing acquisition scan time by increase the number of Gamma Camera detectors to examine. Each medical equipment manufacturer has improved the imaging process techniques to reduce scan time. In this paper, we tried to analyze the difference of image quality between FBP, 3D OSEM reconstruction methods that commercialized and being clinically applied, and Astonish reconstruction method (A kind of Iterative fast reconstruction method of Philips), also difference of image quality on scan time. Material and Methods: We investigated in 32 patients that examined the Bone SPECT from June to July 2008 at department of nuclear medicine, ASAN Medical Center in Seoul. 40sec/frame and 20sec/frame images were acquired that using Philips‘ PRECEDENCE 16 Gamma Camera and then reconstructed those images by using the Astonish (Philips’ Reconstruction Method), 3D OSEM and FBP methods. The blinded test was performed to the clinical interpreting physicians with all images analyzed by each reconstruction method for qualitative analysis. And we analyzed target to non target ratio by draws lesions as the center of disease for quantitative analysis. At this time, each image was analyzed with same location and size of ROI. Results: In a qualitative analysis, there was no significant difference by acquisition time changes in image quality. In a quantitative analysis, the images reconstructed Astonish method showed good quality due to better sharpness and distinguish sharply between lesions and peripheral lesions. After measuring each mean value and standard deviation value of target to non target ratio with 40 sec/frame and 20sec/frame images, those values are Astonish (40 sec-$13.91{\pm}5.62$ : 20 sec-$13.88{\pm}5.92$), 3D OSEM (40 sec-$10.60{\pm}3.55$ : 20 sec-$10.55{\pm}3.64$), FBP (40 sec-$8.30{\pm}4.44$ : 20 sec-$8.19{\pm}4.20$). We analyzed target to non target ratio from 20 sec and 40 sec images. And we analyzed the result, In Astonish (t=0.16, p=0.872), 3D OSEM (t=0.51, p=0.610), FBP (t=0.73, p=0.469) methods, there was no significant difference statistically by acquisition time change in image quality. But FBP indicates no statistical differences while some images indicate difference between 40 sec/frame and 20 sec/frame images by various factors. Conclusions: In the circumstance, try to find a solution to reduce nuclear medicine scan time, the development of nuclear medicine equipment hardware has decreased while software has marched forward at a relentless. Due to development of computer hardware, the image reconstruction time was reduced and the expanded capacity to restore enables iterative methods that couldn't be performed before due to technical limits. As imaging process technique developed, it reduced scan time and we could observe that image quality keep similar level. While keeping exam quality and reducing scan time can induce the reduction of patient's pain and sensory waiting time, also accessibility of nuclear medicine exam will be improved and it provide better service to patients and clinical physician who order exams. Consequently, those things make the image of department of nuclear medicine be improved. Concurrent Imaging - A new function that setting up each image acquisition parameter and enables to acquire images simultaneously with various parameters to once examine.

  • PDF

Study a Technique for Reducing the Influence of Scattered Rays from Surrounding Organs to the Heart during Gated Cardiac Blood Pool scan (Gated Cardiac Blood Pool scan에서의 심장 주위 배후방사능 관심영역 설정시 산란선의 영향을 감소시키기 위한 연구)

  • Kim, Jung-Yul;Park, Hoon-Hee;NamKoong, Hyuk;Cho, Suk-Won;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • Purpose: The Gated cardiac blood pool scan is non-invasive method that a quantitative evaluation of left ventricular function. Also this scan have shown the value of radionuclide ejection fraction measurements during the course of chemotherapy as a predictor of cardiac toxicity. Therefore a reliable method of monitoring its cardiotoxic effects is necessary. the purpose of this study is to minimize the overestimate of left ventricular ejection fraction (LVEF) by modified body position to reduce the influence of scattered rays from surrounding organs of the heart in the background region of interest. Materials and Methods: Gated cardiac blood pool scan using in vivo $^{99m}Tc$-red blood cell (RBC) was carried out in 20 patients (mean $44.8{\pm}8.6$ yr) with chemotherapy for a breast carcinoma. Data acquisition requires about 600 seconds and 24 frames of one heart cycle by the multigated acquisition mode, Synchronization deteriorates toward the end of the cycle and with the distance from the trigger signal (R-wave) by ECG gating. Gated cardiac blood pool scan was studied with conventional method (supine position and the detector head in $30-45^{\circ}$ left anterior oblique position and caudal $10-20^{\circ}$ tilt) and compared with modified method (left lateral flexion position with 360 mL of drinking water). LVEF analysis was performed by using the automatically computer mode. Results: The ROI counts of modified scan method were lower than LV conventional method ($1429{\pm}251$ versus $1853{\pm}243$, <0.01). And LVEF of modified method was also decrease compared with conventional method ($58.3{\pm}5.6%$ versus $65.3{\pm}6.1%$, <0.01). Imaging analysis indicated that stomach was expanded because of water and spleen position was changed to lateral inferior compared with conventional method. Conclusion: This study shows that the modified method in MUGA reduce the influence of scattered rays from surrounding organs. Because after change the body position to left lateral flexion and drinking water, the location of spleen, left lobe of liver and stomach had changed and they could escaped from background ROI. Therefore, modified method could help to minimize the overestimate LVEF (%).

  • PDF

Micro-imaging techniques for evaluation of plastic microfluidic chip

  • Kim, Jung-Kyung;Hyunwoo Bang;Lee, Yongku;Chanil Chung;Yoo, Jung-Yul;Yang, Sang-Sik;Kim, Jin-Seung;Park, Sekwang;Chang, Jun-Keun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.4
    • /
    • pp.239-247
    • /
    • 2001
  • The Fluorescence-Activated Cell Sorter (FACS) is a well-established instrument used for identifying, enumerating, classifying and sorting cells by their physical and optical characteristics. For a miniaturized FACS device, a disposable plastic microchip has been developed which has a hydrodynamic focusing chamber using soft lithography. As the characteristics of the spatially confined sample stream have an effect on sample throughput, detection efficiency, and the accuracy of cell sorting, systematic fluid dynamic studies are required. Flow visualization is conducted with a laser scanning confocal microscopy (LSCM), and three-dimensional flow structure of the focused sample stream is reconstructed from 2D slices acquired at $1\mutextrm{m}$ intervals in depth. It was observed that the flow structure in the focusing chamber is skewed by unsymmetrical velocity profile arising from trapezoidal cross section of the microchannel. For a quantitative analysis of a microscopic flow structure, Confocal Micro-PIV system has been developed to evaluate the accelerated flow field in the focusing chamber. This study proposes a method which defines the depth of the measurement volume using a detection pinhole. The trajectories of red blood cells (RBCs) and their interactions with surrounding flow field in the squeezed sample stream are evaluated to find optimal shape of the focusing chamber and fluid manipulation scheme for stable cell transporting, efficient detection, and sorting

  • PDF

Diagnostic Performance of Combined Single Photon Emission Computed Tomographic Scintimammography and Ultrasonography Based on Computer-Aided Diagnosis for Breast Cancer (유방 SPECT 및 초음파 컴퓨터진단시스템 결합의 유방암 진단성능)

  • Hwang, Kyung-Hoon;Lee, Jun-Gu;Kim, Jong-Hyo;Lee, Hyung-Ji;Om, Kyong-Sik;Lee, Byeong-Il;Choi, Duck-Joo;Choe, Won-Sick
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.3
    • /
    • pp.201-208
    • /
    • 2007
  • Purpose: We investigated whether the diagnostic performance of SPECT scintimammography (SMM) can be improved by adding computer-aided diagnosis (CAD) of ultrasonography (US). Materials and methods: We reviewed breast SPECT SMM images and corresponding US images from 40 patients with breast masses (21 malignant and 19 benign tumors). The quantitative data of SPECT SMM were obtained as the uptake ratio of lesion to contralateral normal breast. The morphologic features of the breast lesions on US were extracted and quantitated using the automated CAD software program. The diagnostic performance of SPECT SMM and CAD of US alone was determined using receiver operating characteristic (ROC) curve analysis. The best discriminating parameter (D-value) combining SPECT SMM and the CAD of US was created. The sensitivity, specificity and accuracy of combined two diagnostic modalities were compared to those of a single one. Results: Both SPECT SMM and CAD of US showed a relatively good diagnostic performance (area under curve = 0.846 and 0.831, respectively). Combining the results of SPECT SMM and CAD of US resulted in improved diagnostic performance (area under curve =0.860), but there was no statistical differerence in sensitivity, specificity and accuracy between the combined method and a single modality. Conclusion: It seems that combining the results of SPECT SMM and CAD of breast US do not significantly improve the diagnostic performance for diagnosis of breast cancer, compared with that of SPECT SMM alone. However, SPECT SMM and CAD of US may complement each other in differential diagnosis of breast cancer.