• Title/Summary/Keyword: Quantitative imaging

Search Result 651, Processing Time 0.022 seconds

Relationship between 18F-FDG PET/CT Semi-Quantitative Parameters and International Association for the Study of Lung Cancer, American Thoracic Society/European Respiratory Society Classification in Lung Adenocarcinomas

  • Lihong Bu;NingTu;Ke Wang;Ying Zhou;Xinli Xie;Xingmin Han;Huiqin Lin;Hongyan Feng
    • Korean Journal of Radiology
    • /
    • v.23 no.1
    • /
    • pp.112-123
    • /
    • 2022
  • Objective: To investigate the relationship between 18F-FDG PET/CT semi-quantitative parameters and the International Association for the Study of Lung Cancer, American Thoracic Society/European Respiratory Society (IASLC/ATS/ERS) histopathologic classification, including histological subtypes, proliferation activity, and somatic mutations. Materials and Methods: This retrospective study included 419 patients (150 males, 269 females; median age, 59.0 years; age range, 23.0-84.0 years) who had undergone surgical removal of stage IA-IIIA lung adenocarcinoma and had preoperative PET/CT data of lung tumors. The maximum standardized uptake values (SUVmax), background-subtracted volume (BSV), and background-subtracted lesion activity (BSL) derived from PET/CT were measured. The IASLC/ATS/ERS subtypes, Ki67 score, and epidermal growth factor/anaplastic lymphoma kinase (EGFR/ALK) mutation status were evaluated. The PET/CT semi-quantitative parameters were compared between the tumor subtypes using the Mann-Whitney U test or the Kruskal-Wallis test. The optimum cutoff values of the PET/CT semi-quantitative parameters for distinguishing the IASLC/ATS/ERS subtypes were calculated using receiver operating characteristic curve analysis. The correlation between the PET/CT semi-quantitative parameters and pathological parameters was analyzed using Spearman's correlation. Statistical significance was set at p < 0.05. Results: SUVmax, BSV, and BSL values were significantly higher in invasive adenocarcinoma (IA) than in minimally IA (MIA), and the values were higher in MIA than in adenocarcinoma in situ (AIS) (all p < 0.05). Remarkably, an SUVmax of 0.90 and a BSL of 3.62 were shown to be the optimal cutoff values for differentiating MIA from AIS, manifesting as pure ground-glass nodules with 100% sensitivity and specificity. Metabolic-volumetric parameters (BSV and BSL) were better potential independent factors than metabolic parameters (SUVmax) in differentiating growth patterns. SUVmax and BSL, rather than BSV, were strongly or moderately correlated with Ki67 in most subtypes, except for the micropapillary and solid predominant groups. PET/CT parameters were not correlated with EGFR/ALK mutation status. Conclusion: As noninvasive surrogates, preoperative PET/CT semi-quantitative parameters could imply IASLC/ATS/ERS subtypes and Ki67 index and thus may contribute to improved management of precise surgery and postoperative adjuvant therapy.

Radionuclide Reporter Gene Imaging (핵의학적 리포터 유전자 영상)

  • Min, Jung-Joon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.143-151
    • /
    • 2004
  • Recent progress in the development of non-invasive imaging technologies continues to strengthen the role of molecular imaging biological research. These tools have been validated recently in variety of research models, and have been shown to provide continuous quantitative monitoring of the location(s), magnitude, and time-variation of gene expression. This article reviews the principles, characteristics, categories and the use of radionuclide reporter gene imaging technologies as they have been used in imaging cell trafficking, imaging gene therapy, imaging endogenous gene expression and imaging molecular interactions. The studios published to date demonstrate that reporter gene imaging technologies will help to accelerate pre-clinical model validation as well as allow for clinical monitoring of human diseases.

Monitoring Gene Therapy by Radionuclide Approaches (핵의학적 기법을 이용한 유전자 치료 영상법)

  • Min, Jung-Joon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.2
    • /
    • pp.96-105
    • /
    • 2006
  • Molecular imaging has its root in nuclear medicine and gene therapy monitoring. Therefore, recent progress in the development of non-invasive imaging technologies, particularly nuclear medicine, should allow molecular imaging to play a major role in the field of gene therapy. These tools have recently been validated in gene therapy models for continuous quantitative monitoring of the location, magnitude, and time-variation of gene delivery and/or expression. This article reviews the use of radionuclide imaging technologies as they have been used in imaging gene delivery and gene expression for gene therapy applications. The studios published to date lend support that noninvasive imaging tools will help to accelerate pre-clinical model validation as well as allow for clinical monitoring of human gene therapy.

Evaluation of TlBr semiconductor detector in gamma camera imaging: Monte Carlo simulation study

  • Youngjin Lee;Chanrok Park
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4652-4659
    • /
    • 2022
  • Among the detector materials available at room temperature, thallium bromide (TlBr), which has a relatively high atomic number and density, is widely used for gamma camera imaging. This study aimed to verify the usefulness of TlBr through quantitative evaluation by modeling detectors of various compound types using Monte Carlo simulations. The Geant4 application for tomographic emission was used for simulation, and detectors based on cadmium zinc telluride and cadmium telluride materials were selected as a comparison group. A pixel-matched parallel-hole collimator with proven excellent performance was modeled, and phantoms used for quality control in nuclear medicine were used. The signal-to-noise ratio (SNR), contrast to noise ratio (CNR), sensitivity, and full width at half maximum (FWHM) were used for quantitative analysis to evaluate the image quality. The SNR, CNR, sensitivity, and FWHM for the TlBr detector material were approximately 1.05, 1.04, 1.41, and 1.02 times, respectively, higher than those of the other detector materials. The SNR, CNR and sensitivity increased with increasing detector thickness, but the spatial resolution in terms of FWHM decreased. Thus, we demonstrated the feasibility and possibility of using the TlBr detector material in comparison with commercial detector materials.

Investigation of a blind-deconvolution framework after noise reduction using a gamma camera in nuclear medicine imaging

  • Kim, Kyuseok;Lee, Min-Hee;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2594-2600
    • /
    • 2020
  • A gamma camera system using radionuclide has a functional imaging technique and is frequently used in the field of nuclear medicine. In the gamma camera, it is extremely important to improve the image quality to ensure accurate detection of diseases. In this study, we designed a blind-deconvolution framework after a noise-reduction algorithm based on a non-local mean, which has been shown to outperform conventional methodologies with regard to the gamma camera system. For this purpose, we performed a simulation using the Monte Carlo method and conducted an experiment. The image performance was evaluated by visual assessment and according to the intensity profile, and a quantitative evaluation using a normalized noise-power spectrum was performed on the acquired image and the blind-deconvolution image after noise reduction. The result indicates an improvement in image performance for gamma camera images when our proposed algorithm is used.

Linearized Methods for Quantitative Analysis and Parametric Mapping of Brain PET (뇌 PET 영상 정량화 및 파라메터영상 구성을 위한 선형분석기법)

  • Kim, Su-Jin;Lee, Jae-Sung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.78-84
    • /
    • 2007
  • Quantitative analysis of dynamic brain PET data using a tracer kinetic modeling has played important roles in the investigation of functional and molecular basis of various brain diseases. Parametric imaging of the kinetic parameters (voxel-wise representation of the estimated parameters) has several advantages over the conventional approaches using region of interest (ROI). Therefore, several strategies have been suggested to generate the parametric images with a minimal bias and variability in the parameter estimation. In this paper, we will review the several approaches for parametric imaging with linearized methods which include graphical analysis and mulilinear regression analysis.

Quantitative and Qualitative Evaluation of Brain Diffusion Weighted Magnetic Resonance Imaging: Comparision with 1.5 T and 3.0 T Units (뇌 확산강조 자기공명영상에 대한 정량적, 성적 평가: 1.5 T와 3.0 T 기기 비교)

  • Goo, Eun-Hoe;Dong, Kyung-Rae
    • Journal of Radiation Industry
    • /
    • v.10 no.4
    • /
    • pp.227-230
    • /
    • 2016
  • DWI of biological effects are independent of magnetic field strength in various regions. High field strength, however, does affect the signal to noise ratio (SNR) and artifacts of diffusion weighted imaging (DWI) images, which ultimately will influence the quantitative of diffusion imaging. In this study, the effects of field strength on DWI are reviewed. The effects of the diseases also are discussed. Comparing DWI in cerebellum, WM, GM, Hyperacute region measurements both as a function of field strength (1.5T and 3.0T). Overall, the SNR of the DWI roughly doubled going from 1.5 T to 3.0 T. In summary, DWI studies at 3.0 T is provided significantly improved DWI measurements relative to studies at 1.5T.

Comparison of Ultrasonography Images on Normal Muscle and Myofascial Trigger Points Activated Muscle (정상근과 근막 유발점이 활성화된 근육의 초음파 영상의 비교)

  • Kim, Myung-Hoon;Kim, Su-Hyon;Kim, Hyun-Jin
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.2
    • /
    • pp.76-80
    • /
    • 2013
  • Purpose: The objective of this study was to offer primary clinical data examining whether change of imaging structure and quantitative evaluation of muscle activity on myofascial trigger points can lead to implementation of an analytical technique for evaluation of myofascial pain diagnoses. In addition, we examined the effect of a variety of mediation techniques, in order to examine neuromuscular physiological characteristics of myofascial trigger points muscle by comparing differences in pressure pain threshold and ultrasound imaging. Methods: Participants in the study included 30 adults in their twenties. The subjects were divided into the normal and myofascial trigger points groups. Clinical outcomes were evaluated by pressure pain threshold for pain and ultrasound imaging was performed for evaluation of the structural characteristics of muscle. Independent t-test was used for statistical analysis. Results: The two groups showed statistical significance in the change in pressure pain threshold (p<0.05). Findings of ultrasound imaging analysis showed no significant differences, increased muscle thickness was observed (p>0.05). Findings of ultrasound imaging analysis showed significant differences, increased muscle echodensity was observed (p<0.05). Findings on ultrasound imaging analysis showed significant differences, increased muscle white area index was observed (p<0.05). Conclusion: From these results, active myofascial trigger points muscle showed quality deterioration on ultrasound imaging. Thorough evaluation of imaging structure and physiological characteristics can be useful quantitative analytical techniques for diagnosis of myofascial pain syndrome and a primary factor reflected in physical therapy intervention.

Quantitation of In-Vivo Physiological Function using Nuclear Medicine Imaging and Tracer Kinetic Analysis Methods (핵의학 영상과 추적자 동력학 분석법을 이용한 생체기능 정량화)

  • Kim, Su-Jin;Kim, Kyeong-Min;Lee, Jae-Sung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.145-152
    • /
    • 2008
  • Nuclear medicine imaging has an unique advantage of absolute quantitation of radioactivity concentration in body. Tracer kinetic analysis has been known as an useful investigation methods in quantitative study of in-vivo physiological function. The use of nuclear medicine imaging and kinetic analysis together can provide more useful and powerful intuition in understanding biochemical and molecular phenomena in body. There have been many development and improvement in kinetic analysis methodologies, but the conventional basic concept of kinetic analysis is still essential and required for further advanced study using new radiopharmaceuticals and hybrid molecular imaging techniques. In this paper, the basic theory of kinetic analysis and imaging techniques for suppressing noise were summarized.

Ultrasound Elasticity Imaging Methods (초음파 탄성 영상법)

  • Jeong, Mok-Kun;Kwon, Sung-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1E
    • /
    • pp.1-10
    • /
    • 2010
  • The difference in echogenicity between cancerous and normal tissues is not quite distinguishable in ultrasound B-mode imaging. However, tumor or cancer in breast or prostate tends to be stiffer than the surrounding normal tissue. Thus, imaging the stiffness contrast between the two different tissue types is helpful for quantitative diagnosis, and such a method of imaging the elasticity of human tissue is collectively referred to as ultrasound elasticity imaging. Recently, elasticity imaging has established itself as an effective diagnostic modality in addition to ultrasound B-mode imaging. The purpose of this paper is to present various elasticity imaging methods that have been reported up to now and to describe their principles of operation and characteristics.