• Title/Summary/Keyword: Quantitative Modeling

Search Result 658, Processing Time 0.023 seconds

Trends identification of species distribution modeling study in Korea using text-mining technique (텍스트마이닝을 활용한 종분포모형의 국내 연구 동향 파악)

  • Dong-Joo Kim;Yong Sung Kwon;Na-Yeon Han;Do-Hun Lee
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.413-426
    • /
    • 2023
  • Species distribution model (SDM) is used to preserve biodiversity and climate change impact. To evaluate biodiversity, various studies are being conducted to utilize and apply SDM. However, there is insufficient research to provide useful information by identifying the current status and recent trends of SDM research and discussing implications for future research. This study analyzed the trends and flow of academic papers, in the use of SDM, published in academic journals in South Korea and provides basic information that can be used for related research in the future. The current state and trends of SDM research were presented using philological methods and text-mining. The papers on SDM have been published 148 times between 1998 and 2023 with 115 (77.7%) papers published since 2015. MaxEnt model was the most widely used, and plant was the main target species. Most of the publications were related to species distribution and evaluation, and climate change. In text mining, the term 'Climate change' emerged as the most frequent keyword and most studies seem to consider biodiversity changes caused by climate change as a topic. In the future, the use of SDM requires several considerations such as selecting the models that are most suitable for various conditions, ensemble models, development of quantitative input variables, and improving the collection system of field survey data. Promoting these methods could help SDM serve as valuable scientific tools for addressing national policy issues like biodiversity conservation and climate change.

A Spatial-Temporal Correlation Analysis of Housing Prices in Busan Using SpVAR and GSTAR (SpVAR(공간적 벡터자기회귀모델)과 GSTAR(일반화 시공간자기회귀모델)를 이용한 부산지역 주택가격의 시공간적 상관성 분석)

  • Kwon, Youngwoo;Choi, Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.245-256
    • /
    • 2024
  • Since 2020, quantitative easing and easy money policies have been implemented for the purpose of economic stimulus. As a result, real estate prices have skyrocketed. In this study, the relationship between sales and rental prices by housing type during the period of soaring real estate prices in Busan was analyzed spatio-temporally. Based on the actual transaction price data, housing type, transaction type, and monthly data of district units were constructed. Among the spatio-temporal analysis models, the SpVAR, which is used to understand the temporal and spatial effects of variables, and the GSTAR, which is used to understand the effects of each region on those variables, were used. As a result, the sales price of apartment had positive effect on the sale price of apartment, row house, and detached house in the surrounding area, including the target area. On the other hand, it was confirmed that demand was converted to apartment rental due to an increase in apartment sales prices, and the sale price fell again over time. The spatio-temporal spillover effect of apartments was positive, but the positive effect of row house and detached house were concentrated in the original downtown area.

Analysis of the Relationship between Melon Fruit Growth and Net Quality Using Computer Vision and Fruit Modeling (컴퓨터 비전과 과실 모델링을 이용한 멜론 과실 생장과 네트 품질의 관계 분석)

  • Seungri Yoon;Minju Shin;Jin Hyun Kim;Ji Wong Bang;Ho Jeong Jeong;Tae In Ahn
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.456-465
    • /
    • 2023
  • Melon fruits exhibit a wide range of morphological variations in fruit shape, sugar content, net quality, diameter and weight, which are largely dependent on the variety. These characteristics significantly affect marketability. For netted varieties, the uniformity and pattern of the net serve as key factors in determining the external quality of the melon and act as indicators of its internal quality. In this study, we evaluated the effect of fruit morphology and growth on netting by analyzing the changes in melon fruit quality under LED light treatment and monitoring fruit growth. Computer vision analysis was used for quantitative evaluation of fruit net quality, and a three-variable logistic model was applied to simulate fruit growth. The results showed that melons grown under LED conditions exhibited more uniform fruit shape and improvements in both net quality and sugar content compared to the control group. The results of the logistic model showed minimal error values and consistent curve slopes across treatments, confirming its ability to accurately predict fruit growth patterns under varying light conditions. This study provides an understanding of the effects of fruit shape and growth on net quality.

Estimation of Internal Motion for Quantitative Improvement of Lung Tumor in Small Animal (소동물 폐종양의 정량적 개선을 위한 내부 움직임 평가)

  • Yu, Jung-Woo;Woo, Sang-Keun;Lee, Yong-Jin;Kim, Kyeong-Min;Kim, Jin-Su;Lee, Kyo-Chul;Park, Sang-Jun;Yu, Ran-Ji;Kang, Joo-Hyun;Ji, Young-Hoon;Chung, Yong-Hyun;Kim, Byung-Il;Lim, Sang-Moo
    • Progress in Medical Physics
    • /
    • v.22 no.3
    • /
    • pp.140-147
    • /
    • 2011
  • The purpose of this study was to estimate internal motion using molecular sieve for quantitative improvement of lung tumor and to localize lung tumor in the small animal PET image by evaluated data. Internal motion has been demonstrated in small animal lung region by molecular sieve contained radioactive substance. Molecular sieve for internal lung motion target was contained approximately 37 kBq Cu-64. The small animal PET images were obtained from Siemens Inveon scanner using external trigger system (BioVet). SD-Rat PET images were obtained at 60 min post injection of FDG 37 MBq/0.2 mL via tail vein for 20 min. Each line of response in the list-mode data was converted to sinogram gated frames (2~16 bin) by trigger signal obtained from BioVet. The sinogram data was reconstructed using OSEM 2D with 4 iterations. PET images were evaluated with count, SNR, FWHM from ROI drawn in the target region for quantitative tumor analysis. The size of molecular sieve motion target was $1.59{\times}2.50mm$. The reference motion target FWHM of vertical and horizontal was 2.91 mm and 1.43 mm, respectively. The vertical FWHM of static, 4 bin and 8 bin was 3.90 mm, 3.74 mm, and 3.16 mm, respectively. The horizontal FWHM of static, 4 bin and 8 bin was 2.21 mm, 2.06 mm, and 1.60 mm, respectively. Count of static, 4 bin, 8 bin, 12 bin and 16 bin was 4.10, 4.83, 5.59, 5.38, and 5.31, respectively. The SNR of static, 4 bin, 8 bin, 12 bin and 16 bin was 4.18, 4.05, 4.22, 3.89, and 3.58, respectively. The FWHM were improved in accordance with gate number increase. The count and SNR were not proportionately improve with gate number, but shown the highest value in specific bin number. We measured the optimal gate number what minimize the SNR loss and gain improved count when imaging lung tumor in small animal. The internal motion estimation provide localized tumor image and will be a useful method for organ motion prediction modeling without external motion monitoring system.

LIM Implementation Method for Planning Biotope Area Ratio in Apartment Complex - Focused on Terrain and Pavement Modeling - (공동주택단지의 생태면적률 계획을 위한 LIM 활용방법 - 지형 및 포장재 모델링을 중심으로 -)

  • Kim, Bok-Young;Son, Yong-Hoon;Lee, Soon-Ji
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.3
    • /
    • pp.14-26
    • /
    • 2018
  • The Biotope Area Ratio (BAR) is a quantitative pre-planning index for sustainable development and an integrated indicator for the balanced development of buildings and outdoor spaces. However, it has been pointed out that there are problems in operations management: errors in area calculation, insufficiency in the underground soil condition and depth, reduction in biotope area after construction, and functional failure as a pre-planning index. To address these problems, this study proposes implementing LIM. Since the weights of the BAR are mainly decided by the underground soil condition and depth with land cover types, the study focused on the terrain and pavements. The model should conform to BIM guidelines and standards provided by government agencies and professional organizations. Thus, the scope and Level Of Detail (LOD) of the model were defined, and the method to build a model with BIM software was developed. An apartment complex on sloping ground was selected as a case study, a 3D terrain modeled, paving libraries created with property information on the BAR, and a LIM model completed for the site. Then the BAR was calculated and construction documents were created with the BAR table and pavement details. As results of the study, it was found that the application of the criteria on the BAR and calculation became accurate, and the efficiency of design tasks was improved by LIM. It also enabled the performance of evidence-based design on the terrain and underground structures. To adopt LIM, it is necessary to create and distribute LIM library manuals or templates, and build library content that comply with KBIMS standards. The government policy must also have practitioners submit BIM models in the certification system. Since it is expected that the criteria on planting types in the BAR will be expanded, further research is needed to build and utilize the information model for planting materials.

The Evaluation of Resolution Recovery Based Reconstruction Method, Astonish (Resolution Recovery 기반의 Astonish 영상 재구성 기법의 평가)

  • Seung, Jong-Min;Lee, Hyeong-Jin;Kim, Jin-Eui;Kim, Hyun-Joo;Kim, Joong-Hyun;Lee, Jae-Sung;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.58-64
    • /
    • 2011
  • Objective: The 3-dimensional reconstruction method with resolution recovery modeling has advantages of high spatial resolution and contrast because of its precise modeling of spatial blurring according to the distance from detector plane. The aim of this study was to evaluate one of the resolution recovery reconstruction methods (Astonish, Philips Medical), compare it to other iterative reconstructions, and verify its clinical usefulness. Materials and Methods: NEMA IEC PET body phantom and Flanges Jaszczak ECT phantom (Data Spectrum Corp., USA) studies were performed using Skylight SPECT (Philips) system under four different conditions; short or long (2 times of short) radius, and half or full (40 kcts/frame) acquisition counts. Astonish reconstruction method was compared with two other iterative reconstructions; MLEM and 3D-OSEM which vendor supplied. For quantitative analysis, the contrast ratios obtained from IEC phantom test were compared. Reconstruction parameters were determined by optimization study using graph of contrast ratio versus background variability. The qualitative comparison was performed with Jaszczak ECT phantom and human myocardial data. Results: The overall contrast ratio was higher with Astonish than the others. For the largest hot sphere of 37 mm diameter, Astonish showed about 27.1% and 17.4% higher contrast ratio than MLEM and 3D-OSEM, in short radius study. For long radius, Astonish showed about 40.5% and 32.6% higher contrast ratio than MLEM and 3D-OSEM. The effect of acquired counts was insignificant. In the qualitative studies with Jaszczak phantom and human myocardial data, Astonish showed the best image quality. Conclusion: In this study, we have found out that Astonish can provide more reliable clinical results by better image quality compared to other iterative reconstruction methods. Although further clinical studies are required, Astonish would be used in clinics with confidence for enhancement of images.

  • PDF

Data Mining Approaches for DDoS Attack Detection (분산 서비스거부 공격 탐지를 위한 데이터 마이닝 기법)

  • Kim, Mi-Hui;Na, Hyun-Jung;Chae, Ki-Joon;Bang, Hyo-Chan;Na, Jung-Chan
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.3
    • /
    • pp.279-290
    • /
    • 2005
  • Recently, as the serious damage caused by DDoS attacks increases, the rapid detection and the proper response mechanisms are urgent. However, existing security mechanisms do not effectively defend against these attacks, or the defense capability of some mechanisms is only limited to specific DDoS attacks. In this paper, we propose a detection architecture against DDoS attack using data mining technology that can classify the latest types of DDoS attack, and can detect the modification of existing attacks as well as the novel attacks. This architecture consists of a Misuse Detection Module modeling to classify the existing attacks, and an Anomaly Detection Module modeling to detect the novel attacks. And it utilizes the off-line generated models in order to detect the DDoS attack using the real-time traffic. We gathered the NetFlow data generated at an access router of our network in order to model the real network traffic and test it. The NetFlow provides the useful flow-based statistical information without tremendous preprocessing. Also, we mounted the well-known DDoS attack tools to gather the attack traffic. And then, our experimental results show that our approach can provide the outstanding performance against existing attacks, and provide the possibility of detection against the novel attack.

Crosshole EM 2.5D Modeling by the Extended Born Approximation (확장된 Born 근사에 의한 시추공간 전자탐사 2.5차원 모델링)

  • Cho, In-Ky;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.2
    • /
    • pp.127-135
    • /
    • 1998
  • The Born approximation is widely used for solving the complex scattering problems in electromagnetics. Approximating total internal electric field by the background field is reasonable for small material contrasts as long as scatterer is not too large and the frequency is not too high. However in many geophysical applications, moderate and high conductivity contrasts cause both real and imaginary part of internal electric field to differ greatly from background. In the extended Born approximation, which can improve the accuracy of Born approximation dramatically, the total electric field in the integral over the scattering volume is approximated by the background electric field projected to a depolarization tensor. The finite difference and elements methods are usually used in EM scattering problems with a 2D model and a 3D source, due to their capability for simulating complex subsurface conductivity distributions. The price paid for a 3D source is that many wavenumber domain solutions and their inverse Fourier transform must be computed. In these differential equation methods, all the area including homogeneous region should be discretized, which increases the number of nodes and matrix size. Therefore, the differential equation methods need a lot of computing time and large memory. In this study, EM modeling program for a 2D model and a 3D source is developed, which is based on the extended Born approximation. The solution is very fast and stable. Using the program, crosshole EM responses with a vertical magnetic dipole source are obtained and the results are compared with those of 3D integral equation solutions. The agreement between the integral equation solution and extended Born approximation is remarkable within the entire frequency range, but degrades with the increase of conductivity contrast between anomalous body and background medium. The extended Born approximation is accurate in the case conductivity contrast is lower than 1:10. Therefore, the location and conductivity of the anomalous body can be estimated effectively by the extended Born approximation although the quantitative estimate of conductivity is difficult for the case conductivity contrast is too high.

  • PDF

A Comprehensive Approach to Model Development -The Effect of U.S. Retail Employees' Work Experiences on Job Performance, Job Satisfaction, and Retail Career Intention- (연구모델 개발의 포괄적 접근 -미국 소매업 종사자의 직무 경험이 소매업 직업 성과와 직업 만족 그리고 소매업 직업 선택의도에 미치는 영향-)

  • Kim, Hae-Jung;Crutsinger, Christy;Knight, Dee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.12 s.148
    • /
    • pp.1571-1581
    • /
    • 2005
  • In a highly competitive marketplace, U.S. retailers are challenged to attract, recruit, and retain a skilled workforce. The purpose of our research was to examine the impact of young retail employees' work experiences on their job performance, job satisfaction, and career intention using a comprehensive approach to model development. The model was developed in three phases over a four-year period using both qualitative and quantitative methodologies. During Phase 1, we conducted focus group interviews to guide the development of the questionnaire. Work experience was initially operationalized as role conflict, role ambiguity, supervisory support, and work involvement. Using a student sample(n=470) from U.S. universities, we employed multiple regression to determine the significance of relationships between their work experience, job satisfaction, and retail career intention. During Phase 2, we expanded our investigation to include retail work experiences of teens employed while they were in high school. The teen sample(n=898) was drawn from students enrolled in work-study programs in 16 U.S. high schools, and data were analyzed using structural equation modeling (hereafter SEM). During Phase 3, we expanded our model to include two new variables, job characteristics and job performance. Based on a national sample(n=803) of U.S. university students, we employed SEM to holistically determine if retail employees' work experience impacted their job performance, job satisfaction, and retail career intention. During each phase, job satisfaction consistently was the superior antecedent of retail career intention. Among the work experience variables, supervisory support had a positive impact on job satisfaction, while role conflict, role ambiguity, and work involvement exhibited inconsistent effects on job outcomes. The strong relationship between job satisfaction and retail career intention should make job satisfaction a priority for retailers.

Analysis of National Stream Drying Phenomena using DrySAT-WFT Model: Focusing on Inflow of Dam and Weir Watersheds in 5 River Basins (DrySAT-WFT 모형을 활용한 전국 하천건천화 분석: 전국 5대강 댐·보 유역의 유입량을 중심으로)

  • LEE, Yong-Gwan;JUNG, Chung-Gil;KIM, Won-Jin;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.53-69
    • /
    • 2020
  • The increase of the impermeable area due to industrialization and urban development distorts the hydrological circulation system and cause serious stream drying phenomena. In order to manage this, it is necessary to develop a technology for impact assessment of stream drying phenomena, which enables quantitative evaluation and prediction. In this study, the cause of streamflow reduction was assessed for dam and weir watersheds in the five major river basins of South Korea by using distributed hydrological model DrySAT-WFT (Drying Stream Assessment Tool and Water Flow Tracking) and GIS time series data. For the modeling, the 5 influencing factors of stream drying phenomena (soil erosion, forest growth, road-river disconnection, groundwater use, urban development) were selected and prepared as GIS-based time series spatial data from 1976 to 2015. The DrySAT-WFT was calibrated and validated from 2005 to 2015 at 8 multipurpose dam watershed (Chungju, Soyang, Andong, Imha, Hapcheon, Seomjin river, Juam, and Yongdam) and 4 gauging stations (Osucheon, Mihocheon, Maruek, and Chogang) respectively. The calibration results showed that the coefficient of determination (R2) was 0.76 in average (0.66 to 0.84) and the Nash-Sutcliffe model efficiency was 0.62 in average (0.52 to 0.72). Based on the 2010s (2006~2015) weather condition for the whole period, the streamflow impact was estimated by applying GIS data for each decade (1980s: 1976~1985, 1990s: 1986~1995, 2000s: 1996~2005, 2010s: 2006~2015). The results showed that the 2010s averaged-wet streamflow (Q95) showed decrease of 4.1~6.3%, the 2010s averaged-normal streamflow (Q185) showed decreased of 6.7~9.1% and the 2010s averaged-drought streamflow (Q355) showed decrease of 8.4~10.4% compared to 1980s streamflows respectively on the whole. During 1975~2015, the increase of groundwater use covered 40.5% contribution and the next was forest growth with 29.0% contribution among the 5 influencing factors.