DOI QR코드

DOI QR Code

Analysis of the Relationship between Melon Fruit Growth and Net Quality Using Computer Vision and Fruit Modeling

컴퓨터 비전과 과실 모델링을 이용한 멜론 과실 생장과 네트 품질의 관계 분석

  • Seungri Yoon (Protected Horticulture Researcher Institute, NIHHS) ;
  • Minju Shin (Protected Horticulture Researcher Institute, NIHHS) ;
  • Jin Hyun Kim (Protected Horticulture Researcher Institute, NIHHS) ;
  • Ji Wong Bang (Protected Horticulture Researcher Institute, NIHHS) ;
  • Ho Jeong Jeong (Protected Horticulture Researcher Institute, NIHHS) ;
  • Tae In Ahn (Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University)
  • 윤승리 (농촌진흥청 국립원예특작과학원) ;
  • 신민주 (농촌진흥청 국립원예특작과학원) ;
  • 김진현 (농촌진흥청 국립원예특작과학원) ;
  • 방지웅 (농촌진흥청 국립원예특작과학원) ;
  • 정호정 (농촌진흥청 국립원예특작과학원) ;
  • 안태인 (서울대학교 농림생물자원학부)
  • Received : 2023.10.05
  • Accepted : 2023.10.27
  • Published : 2023.10.31

Abstract

Melon fruits exhibit a wide range of morphological variations in fruit shape, sugar content, net quality, diameter and weight, which are largely dependent on the variety. These characteristics significantly affect marketability. For netted varieties, the uniformity and pattern of the net serve as key factors in determining the external quality of the melon and act as indicators of its internal quality. In this study, we evaluated the effect of fruit morphology and growth on netting by analyzing the changes in melon fruit quality under LED light treatment and monitoring fruit growth. Computer vision analysis was used for quantitative evaluation of fruit net quality, and a three-variable logistic model was applied to simulate fruit growth. The results showed that melons grown under LED conditions exhibited more uniform fruit shape and improvements in both net quality and sugar content compared to the control group. The results of the logistic model showed minimal error values and consistent curve slopes across treatments, confirming its ability to accurately predict fruit growth patterns under varying light conditions. This study provides an understanding of the effects of fruit shape and growth on net quality.

멜론 과실은 품종에 따라 과형, 당도, 네트 품질, 직경 및 무게 등에서 다양한 형태적 변이를 보이며, 이러한 특성이 시장성을 결정하는 주요 요인이다. 네트 품종의 경우, 네트의 균일성과 패턴은 멜론의 외적 품질을 결정하는 중요한 요소로 작용하며, 멜론의 내부 품질을 보장하는 지표로 활용된다. 본 연구는 LED 보광 처리를 통한 멜론 과실의 품질 변화 및 과실 생장 모델링을 통해 과실 형태와 생장이 네트에 미치는 영향을 분석하였다. 컴퓨터 비전 분석을 사용하여 과실의 네트 품질을 정량적으로 평가하였으며, 3변수 로지스틱 모델을 활용하여 과실의 생장을 모델링하였다. 실험 결과 LED 하에서 재배된 멜론은 대조구에 비해 더 균일한 과형을 가지며, 네트의 품질과 당도 모두에서 향상된 것으로 나타났다. 또한, 로지스틱 모델을 통한 결과에서는 낮은 오차값과 처리 간에 일관된 곡선의 기울기를 확인할 수 있었으며, 다양한 광조건 하에서의 과실 생장 패턴을 효과적으로 예측할 수 있음을 확인하였다. 이 연구는 과실의 형태와 생장이 네트 품질에 어떠한 영향을 미치는지에 대한 이해를 제공한다.

Keywords

Acknowledgement

본 결과물은 농림축산식품부 및 과학기술정보통신부, 농촌진흥청의 재원으로 농림식품기술기획평가원과 재단법인 스마트팜연구개발사업단의 스마트팜다부처패키지혁신기술개발사업의 지원을 받아 연구되었음(과제고유번호 421001-03, 농촌진흥청 과제번호 PJ016439202206).

References

  1. Ahn J.H., K.D. Kim, and J.T. Lee 2014, Growth modeling of Chinese cabbage in an alpine area. Korean J Agric For Meteorol 16:309-315. (in Korean) doi:10.5532/KJAFM.2014.16.4.309 
  2. Akiba Y., A. Ishibashi, M. Sato, and H. Shima 2022, Empirical rule of fruit rind fragmentation in muskmelon netting. J Phys Soc Japan 91:104801. 
  3. Bhargava A., and A. Bansal 2021, Fruits and vegetables quality evaluation using computer vision: A review. J King Saud Univ - Comput 33:243-257. doi:10.1016/j.jksuci.2018.06.002 
  4. Blasco J., N. Aleixos, and E. Molto 2003, Machine vision system for automatic quality grading of fruit. Biosyst Eng 85:415-423. doi:10.1016/S1537-5110(03)00088-6 
  5. Choi J.Y., D.H. Kim, S.H. Kwon, W.S. Choi, and J.S. Kim 2017, Modeling growth of canopy heights and stem diameters in soybeans at different groundwater level. J Korean Soc Ind Converg 20:395-404. (in Korean) doi:10.21289/KSIC.2017.20.5.395 
  6. Choi S.H., M.Y. Lim, G.L. Choi, S.H. Kim, and H.J. Jeong 2019, Growth and quality of two melon cultivars in hydroponics affected by mixing ratio of coir substrate and different irrigation amount on spring season. J Bio-Env Con 30:376-387. (in Korean) doi:10.12791/KSBEC.2019.28.4.376 
  7. Dougherty G., and G.M. Henebry 2002, Lacunarity analysis of spatial pattern in CT images of vertebral trabecular bone for assessing osteoporosis. Med Eng Phys 24:129-138. https://doi.org/10.1016/S1350-4533(01)00106-0
  8. FAO 2020, Crop statistics. Retrieved from http://www.fao.org/faostat/en/#data/QC. 
  9. Genard M., C. Gibert, C. Bruchou, and F. Lescourret 2009, An intelligent virtual fruit model focussing on quality attributes. J Hortic Sci Biotechnol 84:157-163.  https://doi.org/10.1080/14620316.2009.11512614
  10. Gerchikov N., A. Keren-Keiserman, R. Perl-Treves, and I. Ginzberg 2008, Wounding of melon fruits as a model system to study rind netting. Sci Hortic 117:115-122.  https://doi.org/10.1016/j.scienta.2008.03.015
  11. Gilmore S., R. Hofmann-Wellenhof, J. Muir, and H.P. Soyer 2009, Lacunarity analysis: a promising method for the automated assessment of melanocytic naevi and melanoma. PLoS ONE 4:e7449. 
  12. Hong Y., S. Park, S. Yun, J. Kwon, S. Lee, S. Lee, J. Moon, J. Jang, H. Bae, and J. Hwang 2023, Photosynthesis by leaf age and fruit characteristics by fruiting nodes in vertical and hydroponic cultivation of oriental melon applied with air duct for high-temperature season. J Bio-Env Con 32:89-96. (in Korean) doi:10.12791/KSBEC.2023.32.2.089 
  13. Hwang Y.H., K.H. Cho, G.W. Song, W.K. Shin, and B.R. Jeong 1998, Effect of pinching and fruit setting, and planting density on fruit quality and yield of muskmelon cultured by deep flow technique. J Bio Fac Env 7:219-225. (in Korean)
  14. Jiang C., M. Johkan, M. Hohjo, S. Tsukagoshi, M. Ebihara, A. Nakaminami, and T. Maruo 2017. Photosynthesis, plant growth, and fruit production of single-truss tomato improves with supplemental lighting provided from underneath or within the inner canopy. Sci Hortic 222:221-229. doi:10.1016/j.scienta.2017.04.026 
  15. Keren-Keiserman A., Z. Tanami, O. Shoseyov, and I. Ginzberg 2004, Differing rind characteristics of developing fruits of smooth and netted melons (Cucumis melo). J Hortic Sci Biotechnol 79:107-113 doi:10.1080/14620316.2004.11511721 
  16. Kim H.J., M.Y. Lin, and C.A. Mitchell 2019, Light spectral and thermal properties govern biomass allocation in tomato through morphological and physiological changes. Environ Exp Bot 157:228-240. doi:10.1016/j.envexpbot.2018.10.019 
  17. Kim K.S., and H.J. Lee 2012, Horticultural Crop Science II. KNOU Press, Seoul, Korea, pp 158-159. (in Korean)
  18. Kim S.J., J.H. Kim, and J.S. Park 2020a, Development and comparison of growth regression model of dry weight and leaf area according to growing days and accumulative temperature of chrysanthemum "Baekma". Protected Hort Plant Fac 29:414-420. (in Korean) doi:10.12791/KSBEC.2020.29.4.414 
  19. Kim S.H., G. L. Choi, S.H. Choi, M.Y. Lim, and H.J. Jeong 2020b, Growth characteristics of small and medium type watermelon according to number of stem training and position of fruit setting in the winter season. J Bio-Env Con 29:189-195. (in Korean). doi:10.12791/KSBEC.2020.29.2.189 
  20. Lescourret F., and M. Genard 2005, A virtual peach fruit model simulating changes in fruit quality during the final stage of fruit growth. Tree Physiol 25:1303-1315.  https://doi.org/10.1093/treephys/25.10.1303
  21. Li L., L. Chang, S. Ke, and D. Huang 2012, Multifractal analysis and lacunarity analysis: A promising method for the automated assessment of muskmelon (Cucumis melo L.) epidermis netting. Comput Electron Agric 88:72-84. doi:10.1016/j.compag.2012.06.006 
  22. Lim M.Y., M.Y. Roh, H.J. Jeong, G.L. Choi, S.H. Kim, S.H. Choi, and C.K. Lee 2021, Growth, quality and irrigation requirements of melon cultivars in hydroponic cultivation using coir substrate. J Bio-Env Con 30:188-195. (in Korean) doi:10.12791/KSBEC.2021.30.3.188 
  23. Lim M.Y., S.H. Choi, G.L. Choi, S.H. Kim, and H.J. Jeong 2020, Growth and quality of muskmelon (Cucumis melo L.) as affected by fruiting node order, pinching node order and harvest time in hydroponics using coir substrate. Protected Hort Plant Fac 29:406-413. (in Korean) doi:10.12791/KSBEC.2020.29.4.406 
  24. Liu L., F. Kakihara, and M. Kato 2004, Characterization of six varieties of Cucumis melo L. based on morphological and physiological characters, including shelf-life of fruit. Euphytica 135:305-313.  https://doi.org/10.1023/B:EUPH.0000013330.66819.6f
  25. Monforte A.J., M. Oliver, M.J. Gonzalo, J.M. Alvarez, R. Dolcet-Sanjuan, and P. Arus 2004, Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108:750-758.  https://doi.org/10.1007/s00122-003-1483-x
  26. Paponov M., D. Kechasov, J. Lacek, M.J. Verheul, and I.A. Paponov 2020, Supplemental light-emitting diode inter-lighting increases tomato fruit growth through enhanced photosynthetic light use efficiency and modulated root activity. Front Plant Sci 10:1656. doi:10.3389/fpls.2019.01656 
  27. Paris M. K., J.E. Zalapa, J.D. McCreight, and J.E. Staub 2008, Genetic dissection of fruit quality components in melon (Cucumis melo L.) using a RIL population derived from exotic× elite US Western Shipping germplasm. Mol Breed 22:405-419.  https://doi.org/10.1007/s11032-008-9185-3
  28. Puthmee T., K. Takahashi, M. Sugawara, R. Kawamata, Y. Motomura, T. Nishizawa, T. Aikawa, and W. Kumpoun 2013, The role of net development as a barrier to moisture loss in netted melon fruit (Cucumis melo L.). HortScience 48:1463-1469.  https://doi.org/10.21273/HORTSCI.48.12.1463
  29. Qian L., L. Daren, N. Qingliang, H. Danfeng, and C. Liying 2019, Non-destructive monitoring of netted muskmelon quality based on its external phenotype using random forest. Plos One 14:1-11. doi:10.1371/journal.pone.0221259 
  30. RDA 2012, Manual for agriculture investigation. Suwon, Korea pp. 590-593. (in Korean) 
  31. Silberstein L, I. Kovalski, Y. Brotman, C. Perin, C. Dogimont, M. Pitrat, J. Klingler, G. Thompson, V. Portnoy, N. Katzir, and R. Perl-Treves 2003, Linkage map of Cucumis melo including phenotypic traits and sequence-characterized genes. Genome 46:761-773. doi:10.1139/g03-060