• Title/Summary/Keyword: Quantile vector

Search Result 34, Processing Time 0.016 seconds

A Confidence Interval for Median Survival Time in the Additive Risk Model

  • Kim, Jinheum
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.3
    • /
    • pp.359-368
    • /
    • 1998
  • Let ξ$_{p}$(z$_{0}$) be the pth quantile of the distribution of the survival time of an individual with time-invariant covariate vector z$_{0}$ in the additive risk model. We propose an estimator of (ξ$_{p}$(z$_{0}$) and derive its asymptotic distribution, and then construct an approximate confidence interval of ξ$_{p}$(z$_{0}$) . Simulation studies are carried out to investigate performance of the proposed estimator far practical sample sizes in terms of empirical coverage probabilities. Also, the estimator is illustrated on small cell lung cancer data taken from Ying, Jung, and Wei (1995) .d Wei (1995) .

  • PDF

Bivariate skewness, kurtosis and surface plot (이변량 왜도, 첨도 그리고 표면그림)

  • Hong, Chong Sun;Sung, Jae Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.959-970
    • /
    • 2017
  • In this study, we propose bivariate skewness and kurtosis statistics and suggest a surface plot that can visually implement bivariate data containing the correlation coefficient. The skewness statistic is expressed in the form of a paired real values because this represents the skewed directions and degrees of the bivariate random sample. The kurtosis has a positive value which can determine how thick the tail part of the data is compared to the bivariate normal distribution. Moreover, the surface plot implements bivariate data based on the quantile vectors. Skewness and kurtosis are obtained and surface plots are explored for various types of bivariate data. With these results, it has been found that the values of the skewness and kurtosis reflect the characteristics of the bivariate data implemented by the surface plots. Therefore, the skewness, kurtosis and surface plot proposed in this paper could be used as one of valuable descriptive statistical methods for analyzing bivariate distributions.

Multivariate empirical distribution plot and goodness-of-fit test (다변량 경험분포그림과 적합도 검정)

  • Hong, Chong Sun;Park, Yongho;Park, Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.4
    • /
    • pp.579-590
    • /
    • 2017
  • The multivariate empirical distribution function could be defined when its distribution function can be estimated. It is known that bivariate empirical distribution functions could be visualized by using Step plot and Quantile plot. In this paper, the multivariate empirical distribution plot is proposed to represent the multivariate empirical distribution function on the unit square. Based on many kinds of empirical distribution plots corresponding to various multivariate normal distributions and other specific distributions, it is found that the empirical distribution plot also depends sensitively on its distribution function and correlation coefficients. Hence, we could suggest five goodness-of-fit test statistics. These critical values are obtained by Monte Carlo simulation. We explore that these critical values are not much different from those in text books. Therefore, we may conclude that the proposed test statistics in this work would be used with known critical values with ease.

Multivariate conditional tail expectations (다변량 조건부 꼬리 기대값)

  • Hong, C.S.;Kim, T.W.
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1201-1212
    • /
    • 2016
  • Value at Risk (VaR) for market risk management is a favorite method used by financial companies; however, there are some problems that cannot be explained for the amount of loss when a specific investment fails. Conditional Tail Expectation (CTE) is an alternative risk measure defined as the conditional expectation exceeded VaR. Multivariate loss rates are transformed into a univariate distribution in real financial markets in order to obtain CTE for some portfolio as well as to estimate CTE. We propose multivariate CTEs using multivariate quantile vectors. A relationship among multivariate CTEs is also derived by extending univariate CTEs. Multivariate CTEs are obtained from bivariate and trivariate normal distributions; in addition, relationships among multivariate CTEs are also explored. We then discuss the extensibility to high dimension as well as illustrate some examples. Multivariate CTEs (using variance-covariance matrix and multivariate quantile vector) are found to have smaller values than CTEs transformed to univariate. Therefore, it can be concluded that the proposed multivariate CTEs provides smaller estimates that represent less risk than others and that a drastic investment using this CTE is also possible when a diversified investment strategy includes many companies in a portfolio.