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A Confidence Interval for Median Survival Time in
the Additive Risk Model

Jinheum Kim!

ABSTRACT

Let £,(20) be the pth quantile of the distribution of the survival time of an
individual with time-invariant covariate vector zp in the additive risk model.
We propose an estimator of £,(zp) and derive its asymptotic distribution,
and then construct an approximate confidence interval of ;(20). Simulation
studies are carried out to investigate performance of the proposed estimator
for practical sample sizes in terms of empirical coverage probabilities. Also,
the estimator is illustrated on small cell lung cancer data taken from Ying,
Jung, and Wei (1995).

Keywords: Additive Risk Model; Censoring; Confidence Interval; Median Sur-
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1. INTRODUCTION

The additive risk model specifies that the hazard function for the survival
time T of an individual with time-invariant covariates z = (z1,... ,2-). has the
form

A(t|z) = Xo(t) + B7 2, (1.1)

where 8o = (Bot, - - - ,Por)T is a vector of unknown coefficients, and Xo(t) is the
unspecified baseline hazard function (Lin and Ying (1994)).

Let Z1,... ,Zy, be independent and identically distributed r-dimensional vec-
tors of covariates, and Ti, ... ,T; be independent survival times. Suppose that
given Z; = z, T1,...,T, follow model (1.1). Let Ci,...,Cn be independent
censoring times, and for ¢ = 1,... ,n, let ¥; = min(T;,C;) and &; = I(T; < Cy),
where I(-) is the indicator function of the specified event. Assume that the Z;’s
are bounded, and that conditional on Z;, T; and C; are independent. For each
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i=1,...,n, define N;(t) = I(T; < t,6; = 1) and J;(t) = I(Y; > t). Under model
(1.1), the counting process NN; can be uniquely decomposed so that

M;(t) = N;i(t / Ji(u {dAo +ﬁOTZ,~du} (t=1,...,n),

where M;(-) is a square integrable martingale, and Ag(-) is the cumulative hazard
function associated with Ag.

As in Lin and Ying (1994), statistical inference on fy is based on the following
equation

Z/{z — Z(u)MdN;(w) — Ji(w)8 Zidu),

where Z(t) = 3> Ji(t)Zi/ Y Ji(t). Note that U(f,t) mimics the partial likelihood
score function for the Cox proportional hazards model. The estimator 8, defined
as the solution to U(8, 00) = 0, takes the explicit form

[Z / WiZi - Z(u )}®2du} / (% - ZW}dNi(w),  (1.2)

where a®? = aa” for a column vector a. Lin and Ying (1994) have shown that
the estimator 3 is consistent and asymptotically normally distributed. Also, they
proposed to estimate Ag(t) by

- /0 t{i Ti(u 12{41\/' ()BT Zidu), (1.3)
=1

and have shown that this estimator converges weakly to a zero-mean Gaussian
process.

The influence of the covariates on survival time is measured by [y since
Boj(j = 1,...,r) represents the increase in hazard as Z; is increased one unit.
In some applications, it is often also useful to consider how the median survival
time is affected by the covariates, and in this case we need methods for estimating
median survival time given a value of the covariate vector. Recently, Dabrowska
and Doksum (1987) have developed a procedure to estimate confidence interval
of the median survival time in the Cox proportional hazards model, and Burr
and Doss (1993) have extended the work of Dabrowska and Doksum (1987) to
obtain confidence bands for the median survival time as a function of covariates.
In this article we introduce a confidence interval estimate of median survival time
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in model (1.1) based on the arguments of Burr and Doss ( 1993) and on the results
of Lin and Ying (1994, 1995) for estimations of the regression parameter Gy and
the cumulative hazard function Ag.

For 0 < p < 1, let £,(2) be the pth quantile of the distribution of survival
time T of an individual with time-invariant covariate vector, say zp, in model
(1.1). First, note that for an arbitrary cumulative hazard function H, the survival
function corresponding to H is the product integral

S(t) = Tlu<e{1 — H(du)}

(see Kalbfleish and Prentice (1980), pp. 8-10), and that the pth quantile of 1 — S
is (1 — S)~1(p). For the case of the hazard function A(t|zo) = Ao(t) + fot BT 29du
given by (1.1), this gives

£p(20) = sup{t|l — Mucs{1 — Ao(du) — T 20du} < p}.

Substituting Ag in (1.3) for Ag and B in (1.2) for By, we obtain a natural estimator
of &,(29), given by

&p(20) = sup{t|l — My<; {1 — Ag(B, du) — BT zpdu} < p}.

In the next section, we derive the asymptotic distribution of the estimator
ép(zo), and then construct an approximate confidence interval for £,(29). Section
3 reports the results of Monte Carlo simulation studies to investigate performance
of the proposed estimator in terms of empirical coverage probability. Finally,

Section 4 illustrates the estimator on the small cell lung cancer data taken from
Ying, Jung, and Wei (1995).

2. ASYMPTOTIC DISTRIBUTION OF &,(z)

Define J(t) = n™' 3 Ji(t), SO(Bo,t) = X Ji(8)BT Zi/ 3 Ji(t), SD(Bo, t) =
S Ji(0)BY ZiZ;) Y Ji(t). Also, let 5(t) = E{J(t)}, 2(t) = E{Z(t)}, and for r =
1,2, s (6o, t) = E{S™)(By,?)}. As in Lin and Ying (1995), assume the following
conditions:

Condition 1: There exists a function b such that as n — oo,

sup |n=t S J(®{o(t) + BT ZHZ — Z(H)1F2 - b(t)| = 0p(1).
te(0,00) i—1



362 Jinheum Kim

Condition 2: There exists a nonsingular matrix A such that as n — oo,

= 0p(1).

n—l = o g L7 ®2 _
; /0 Ji(0)1Z - Z()}®%dt - A

Condition 3: For every t € (0,00), the Z(t), J(t), S(O(fo,t), and SM(By, 1)
converge in probability to Z(t), 7(t), 5®(B,1), and s(D(By, ), respectively.
Define

t
Q(t, plz0) = Aot) + /0 BT z0du + In(1 - p),
and

- t A
Ott, plzo) = Ro(B, 1) + /0 A zodu + 1n(1 — p).

Theorem 2.1. For 0 < p; < po < 1, let ¢; = &,(20), ¢ = 1,2. Let B =
f0°° b(u)du and a,(t) = — fot Z(u)du. Under the conditions stated earlier, as n —
00, n%{{fp(zo)—ép(zo)} converges weakly to a zero-mean Gaussian process V(p, zo)
with covariance function

¢2(p1, palzo) = [{BF 20 + Mo(q1) HBE 20 + Ao(g2)}] ! y(p1, palz0), (2.1)

where

(o1, pol0) = /0 " ()" ho(aw) + 5O (B, u)}du
+{q120 + a,(q1)}T A" BA™ {go2o + a2(g2)}

Haw+ )} A7 [ * (0 (B, ) — 5O (B, u)7(as)
+{goz0 + a2(g2) } T A /qu{s(”(ﬁo,U) ~ s(0(By, u)z(u) }du.

Proof: For simplicity, let go = &p(20) and §o = ép(zo). Note that substituting go
for t in Q(t,plz0) and o in Q(t, p|zo), we directly obtain

PN 1, ~ 1,4
0 = n3 {Ao(B, do) — Ao(go)} + 12 (do — 20)6 20 + qon2 (B — Bo) 2. (2:2)
According to Lin and Ying (1995), for any ¢ € (0,00),

n3 {Ao(B,2) — Ao(Bo, 1)} = ¥ (B — Bo)Tax(2) + 0p(1),
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and this implies

n3[{Ao(B, o) — Ao(ﬂo,q())} {Ao(B,q0) ~ Ao(Bo, q0)}]
(B ~ Bo)"{az(do) — a(q0)} + 0p(1). (2.3)

ol

=N

Also, since a, is continuous and ﬁ is n%—consistent, |do — go| being enough small,
the left hand side of (2.3) is 0,(1). Clearly,

(]

n3 {Ao(Bo, do) — Bo(Bo, q0)} = n? / {ZJ (1Y dM;(u) +nb /qodAo(u)
1=1 q
| (2.4)

The first term in (2.4) is op(1) by Lenglart’s inequality, and by Taylor expansion
of Ag about ¢p, the second term is n3 (do — g0)Xol(go) + op( ). From these results,
the first term in (2.2) is asymptotically equivalent to n2{A0 (B,G0) — Mo(go)} +
nz (Go — go) X o(go). Thus, we have

n2(do — o) = —{6% 2 + Ago)} ™

x [nE {Ro(B, 90) — Ao(a0)} + qonF (B — o) 20] + 0p(1).

to|>-l

Furthermore, it follows from the asymptotic expressions of n%(ﬁ Bo) and ne
{Ao(8,q0) — Ao(go)} in Lin and Ying (1994, 1995) that

n% (do — o) = — {20 + Mgo)} "
x{nzz/ {ZJ V1 (4 < go)dMi(u)

Havso + ax(a)) "4 d Y [~ Zw)abi)| +0p(2),

which implies the desired weak convergence from the standard counting process
arguments. O

In the present context estimating Ag is based on kernel smoothers, which are
computationally convenient and also their asymptotic properties have already
been studied by Ramlau-Hansen (1983). To describe them, let K be a function
of bounded variation with support on [~1,1] and whose integral is 1, and let
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bandwidth, depending on n, h — 0 and nh? — 0o, as n — co. Define the kernel

estimator of Ay by
R 00 t— ..
)\()(t) = h_l/- K (%) dAo(ﬁ, u)
0

Here, the specific choices of K and h have been extensively discussed in many
literatures including Silverman (1986, pp. 40-72).

Corollary 2.1. Let ¢; = ép (), i = 1,2. Let A = ’IZf J(u {Z; -

Z(w)}®%du, B=n"1Y [[°{Zi - Z(u }®2dN (u), and a,(t) = ? (u)du. Un-
der the same conditions as in Theorem I, the covariance function C (pl,pgtzo) 18
consistently estimated by

E2(p1, p2lz0) = [{B 20 + Ao(d1) HBT 20 + Ro(d2)}] ™~ 4(p1, p2l20),

where

@ _ . .
4(p1, p2]20) =/0 J(u) " {dAo(u) + S (B, u)}du
+{d120 + a,(q1)} AT BA™ {dozo + &,(d2) }

+{arzo + (@)} A" / 15O (3,u) - 593, u)Z(u)}du

o+ ax(@) A [ (0B, - SOB, 02w au,
0
and then an approximate 100(1-a)% confidence interval for £,(2p) is
€(20) £ 7,0 2{(p, pl20), (2.5)

where 21, is the (1 — %—a) th gquantile of the standard normal distribution.
2

Proof: It can be shown that sup;¢(g ) Ao () = Ao(t)] = 0p(1) by the results of
Ramlau-Hansen (1983), and also from Theorem 1, supp¢(q ) [€5(20) — &p(20)] =
0p(1). If in (2.1) the unknowns fy, &(20), Ao, Ao, @z, s s A and B are
replaced by their consistent estimates 8, ép(zo), Xo, Ao, &z, SO, SO A and
B, respectively, we have a consistent estimator {2(p1, p2|20) of ¢3(p1, pa2l2o). Also,
(2.5) directly holds. O
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Table 3.1 : Empirical Coverage Probabilities of 95% Confidence Intervals of
€p(20) for p=0.25, 0.5 and 0.75 under model A(t; zy) = 1 + 0.052 with a 0-1
binary covariate zg

pth Quantile

0.25 0.5 0.75
% Censoring % Censoring % Censoring
n o 2 10 25 50 10 25 50 10 25 50

50 1 939 936 .931 934 926 922 927 923 924
950 951  .948 946 .949 .966 950 .953 972

100 1 945 946 937 945 941 939 944 940 936
950  .952  .953 952 949 951 952 .948 974

3. NUMERICAL RESULTS

3.1. Simulation Studies

Simulation studies were carried out to investigate performance of the esti-
mator ép(zo) for practical sample sizes. Survival times were generated from an
additive risk model with a 0-1 binary covariate 2z, A(¢;29) = 1 + 0.0529, and
censoring times from exponential distribution with mean set to give the desired
degree of censoring. The three different values of the censoring mean are 8.74,
2.95, and 0.97 corresponding to 10%, 25%, and 50% censoring. To estimate ),
Epanechnikov kernel function, defined by K (t) = 0.75(1 — |¢|2)I(|t| < 1), is used,
and bandwidth is chosen using the maximum likelihood cross-validation method
at each simulation (see Hérdle (1991), pp. 93-95). Based on 10,000 simulations,
Table 3.1 presents the empirical coverage probabilities of confidence intervals of
&p(20) for p=0.25, 0.5, and 0.75 at nominal confidence coefficient 0.95. Table
3.1 implies that the empirical coverage probabilities substantially achieves the
nominal level in any configuration. In case zy = 1, the proposed estimator being
slightly conservative, the coverage rates tend to increase as sample sizes increase.
When the fraction of censoring is heavy, the estimator becomes unstable. This
trend is remarkable at upper tail.
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3.2. A Real Example

We illustrate the proposed estimator ép(zo) for p = 0.5 with a dataset taken
from Ying, Jung, and Wei (1995). This dataset consists of the survival times
of 121 patients with small cell lung cancer. Fifty-nine of 121 patients are given
etopocide followed by cisplatin, say group 1, and the remaining 62 patients are
given cisplatin followed by etopocide, say group 2. Recently, Kim and Song (1995)
and Kim and Lee (1996) have shown that this dataset satisfies the additive risk
assumption using different goodness-of-fit tests for checking whether or not the
difference in hazard rates between two groups is constant. Figure 3.1 displays
maximum likelihood cross-validation score function, defined by

cvir)=n1Y In ZK(YJ;YZ'){Ko(B,l’j)—ﬁo(ﬁ,I’j‘)} — In(h),

=1 i#j

for Epanechnikov kernel function, where z(t—) = lim,4; z(u), and Figure 3.2
displays kernel estimate of hazard rate A corresponding to optimizing bandwidth,
0.37. The estimated median survival times of patients in group 1 and group 2
are 2.638 and 2.795, respectively, and their approximate 95% confidence interval
estimates are (2.332,2.945) for patients in group 1 and (2.518, 3.073) for patients
in group 2.

4. DISCUSSION

We may note that the choice of fy = 0.05 in simulation studies represents
a situation in which the hazard functions in the two groups are nearly equal.
Results not reported here show that the empirical coverage rates of the proposed
estimator do not depart from the nominal confidence level 0.95 for the additive
risk model with Gy = 1.0. For the practical sample size, say, n = 30, the proposed
estimator is slightly more conservative than the results in Table 1, which was
tabulated for n = 50, 100.
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Figure 3.1 : Maximum Likelihood Cross-Validation Score Function for Epanech-
nikov Kernel Function
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Figure 3.2 : Kernel Estimate of the Hazard Rate Corresponding to Optimizing
Bandwidth, 0.37
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