• Title/Summary/Keyword: Quadruple tank system

Search Result 4, Processing Time 0.031 seconds

A Simple Method to Make the Quadruple Tank System Near Linear

  • Lee, Jietae;Kyoung, Inhyun;Heo, Jea Pil;Park, YoungSu;Lim, Yugyeong;Kim, Dong Hyun;Lee, Yongjeh;Yang, Dae Ryook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.767-770
    • /
    • 2017
  • Quadruple tank liquid level systems are popular in testing multivariable control systems for multivariable processes with positive or negative zeros. The liquid level system is nonlinear and it will help to illustrate the robustness of control systems. However, due to nonlinearity, it can be cumbersome to obtain process parameters for testing linear control systems. Perturbation sizes are limited for valid linearized process models, requiring level sensors with high precision. A simple method where the outlet orifice is replaced to a long tube is proposed here. The effluent flow rate becomes proportional to the liquid level due to the friction loss of long tube and the liquid level system shows near linear dynamics. It is applied to the quadruple tank system for easier experiments.

The 2-DOF Control system design for Quadruple-Tank process using Root Locus Technique.

  • Arjin, Numsomran;Thanit, Trisuwannawat;Kitti, Tirasesth
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1371-1374
    • /
    • 2004
  • The control system design of 2-DOF for SISO process by root locus technique is not complicated and efficiently. It can design the control system to have the transient and steady state responses, and do not adjust the gain of process controller later. However, due to control system design for MIMO process, by root locus technique, there is not exact method. This paper is presents the control system design method for Quadruple-Tank Process, by using root locus technique for the structure of 2-DOF control system. The design procedures are first decentralized then using the relative gain array, and finally 2-DOF controller design is applied.

  • PDF

I-P Controller Design for Quadruple-Tank System

  • Suksri, Tianchai;Kongratana, Viriya;Numsomran, Arjin;Trisuwannawat, Thanit;Tirasesth, Kitti
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1862-1866
    • /
    • 2003
  • A control system design with Coefficient Diagram Method (CDM) is proven that effective for SISO control design. But the control system design for MIMO via CDM is not concrete procedure. In this paper presents the control system design method for quadruple-tank process via CDM. By using the decentralized method for both non-minimum phase and minimum phase are made. The results from Integral-Proportional (I-P) controller’s design via CDM and standard Proportional-Integral (PI) controls are also shown to compare the merits of the proposed controllers.

  • PDF

Extending the SRIV Identification Algorithm to MIMO LMFD Models

  • Akroum, Mohamed;Hariche, Kamel
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.135-142
    • /
    • 2009
  • In this paper the Simplified Refined Instrumental Variable (SRIV) identification algorithm for SISO systems is extended to MIMO systems described by a Left Matrix Fraction Description (LMFD). The performance of the extended algorithm is compared to the well-known MIMO four-step instrumental variable (IV4) algorithm. Monte Carlo simulations for different signal to noise ratios are conducted to assess the performance of the algorithm. Moreover, the algorithm is applied to a simulated quadruple tank process.