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Extending the SRIV Identification Algorithm to MIMO LMFD Models

Mohamed Akroum’ and Kamel Hariche*

Abstract — In this paper the Simplified Refined Instrumental Variable (SRIV) identification algorithm
for SISO systems is extended to MIMO systems described by a Left Matrix Fraction Description
(LMFD). The performance of the extended algorithm is compared to the well-known MIMO four-step
instrumental variable (IV4) algorithm. Monte Carlo simulations for different signal to noise ratios are
conducted to assess the performance of the algorithm. Moreover, the algorithm is applied to a

simulated quadruple tank process.

Keywords: MIMO system identification, SRIV, LMFD, IV4, Steiglitz-McBride

1. Introduction

Many different identification methods have been
proposed for both SISO and MIMO systems. Among these
we can mention the PEM and ndsid [1] for the
identification of state space models, and the ARX, IVX
and IV4 methods [1] for systems modeled by a Left
Matrix Fraction Description. These methods have been
implemented and are available in the Matlab System
identification toolbox [2].

An interesting identification algorithm was proposed by
Young [3] [4] and is referred to as the Simplified Refined
Instrumental  Variable (SRIV). It is an optimal
instrumental variable algorithm proposed for the
identification of noisy SISO systems.

It is the purpose of this paper to extend the algorithm
for the identification of noisy MIMO systems described
by a Left Matrix Fraction Description. The performance of
the extended algorithm is then compared to that of the
MIMO 1V4 [1], [2] algorithm used as a benchmark.

In this paper the m-input p-output noisy multivariable
system is assumed to be modeled in matrix fraction
description form as:

k= A g k] = o] (1)
where

-1 -1 —na
Alg )= Ip + Alq + . dyq
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e[k] 1is a white noise vector and q is the shift operator.
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2. The MIMO 1V4 Algorithm

Given a MIMO system modeled as:

k] = AN BG T k) + elk] )

The objective is to identify the matrix coefficients

A; eRP™and B; €R? *"of the matrix polynomials
-1 -1

A{g ") and B(g ).

Defining a new vector v[k|=A(g -1 Jelk ] we can write:

vT[k] = yT[k]+yT[k—1]A1T...+yT[k—na]AZa 5
fuT[k]Bg.,.—uT[k—nb]BZlﬂb ©
or,
ik =3 k- (k1o @)
where
(pT[k]:|:—yT[k—1] o emna) W -1 uT[k—nb]:|
T O

The MIMO 1V4 algorithm [1], [2] may be summarized
as follows:

Algorithm (IV4 Algorithm)

A

1- Determine the Least Squares estimate 91,; using /o

data as:
A

b = [chcp]"1 o'y (5)

where
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yT[n +1,:]
Y =
Vv
o=[0,0,]
- “r 7 _—
-y [n,] -y [n—na+1,:]
(I)y =
T
L w-na )| T veng |
- S -
uT[n,] u [n—nb+1,:]
@, =
_uT[N—l,:]_"' uT[N—nb,:]
and n=na
2- Simulate the model output
-1, -1 -1
zZ[kl=4 (¢ )B(g ulk] (6)
to get Z[k]

A

3- Estimate the parameters 0, as:

T 1T
0, =[¥ ©] %Y (N

where

D, =
_—zT[N—l,:]J —ZT[N—na, ]
4- Compute the residual as
-1 -1
e, [k]=A(q ")lk]1-B(g “)ulk] (8)

where A(q_l) and B(q_l) are extracted from

- Compute a new residual vector e [k] as:
ekl =e, [K]..+ %p (k] C)
6- Estimate a SISO AR model of order p*(na+nb) for
e [k] -
A

e, k1= F (g )elk] (10)

where

-1 -1 —p*(na+nb
Fg V=144 + ot S orainy)d pnatnb)

7- Perform SISO filtering on the components of u[k]
and y[k]:

ul.f[k] = F_l(q_l)ui[k] i=Itom (11)

y=F @y I j=lop (12

8- Compute the auxilary filtred model:

2 =4 B Dl (13)

9- Estimate the final parameters by the IV method
using the filtered signals.

A

0:[‘I’fT<Df]_l‘~I’§Yf (14)
Where
op=[0, 0, ]
V= ooy
FF —y?[n,:] —y?[n—na+l,:]
Py =
T T
__—yf[N—l,:]_ | —yf[N—na,:] 1]
i u?[n,:] _“__u;[n—nb+l,:]_
®, =
__uj;[N—l,:]d“'_ u;[N—nb,:] 1
—Z;[Vl,:] | _—Zf[n—n +1, ]_
q)zf =
T ' T
__—Zf[N_l’:]_jm_ —Zf[N—na,:] 1]

3. The Extended SRIV Algorithm

The SISO SRIV is concerned with the problem of
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estimating the model parameters in terms of the following
least squares cost function:
N N
J=3 ek} (15)
k=1
A

where e[k] is the following error function obtained
directly by inspection of the model

A

-1
B
o[kl = k1~ 29 i (16)

4¢7™h
while N is the total sample size and the “hat™ indicates
estimated values.
This error function is clearly nonlinear in the
parameters of the unknown polynomials. However, it can
be written alternatively as:

A

s

1 o o
e[k] = = {A(q yik1-B(g l)u[k]} (17)
AghH
or:
" ~ _1 * ~ ,1 %
e[k]= A(q )y [K1-B(g u [k] (18)

where  y'[k] and u'[k] are the “prefiltered”
signals defined as follows,

A
1

Mk = 5 k] (19)
A(qh

Wkl = o k] (20)
A(éfl )

Equation (18) is now linear-in-the-parameters of the
transfer function model, so that normal 1V methods could
be used to estimate the parameters if it were possible to
perform the prefiltering operations in (19) and (20). In

practice, of course, the parameters of A(th) are

unknown a priori and so this prefiltering operation will be
made adaptive, with the algorithm “learning” the
parameters of the polynomials in an iterative basis.

The extended SRIV algorithm makes use of the
kronicker product and the col{.} operator that transforms
a matrix into a column vector by stacking its columns on
top of one another.

Expanding equation (2) gives:

Ag DYelk] = yik] + Ak =11+ ATk - na) on
- Blu[k —1}.. - Bnbu[k - nb]

Equation (21) can be written using the kronicker
operator as:

-1 T
Alg™ etk =11, ® k]
T T
+ [Ip ® ylk~n,l leol(4,,)~
L1, ® ulk - 17 Jeol (B )...
T T
—[Ip @ ufk ~ nb} ]col(Bnb)
22)
Solving for e[k] gives:
k1= 47 Ty @y teolr 14 gy @tk =11 1
AN, etk nd 1

A g, ek -0

T
cu/(A1 )
o r co[(AT )
-4 {q )[Ip ®u[’l‘vAnb] ] n;
L‘UI(B, )]
f()l(gjb )—
(23)
or simply
-1, -1 T T
dkl=4 (g M, OMAT Jeolll )~ f,[k]e (24)
The MIMO SRIV Algorithm is as follows:
Algorithm (SRIV algorithm)
I-Initialize A(g"") =1 (25)

P
2- Perform MIMO least squares to get an initial

estimate of theta
N

o= [(bz}cb ¥ ) lcojpyf (26)
3- Compute the auxiliary signal
k)= A7 ¢ B k] @)
4~ Perform MIMO filtering on the signals u(k],
ylkland zlk]

. A=A, ®1k] Jeol(l ) (28)
v k=4 g O, e (29)
s
u L1 =4 g Dl @k | (30)
2 k=4 @ O, @k ) (31)

f
5- Estimate 6 using IV method

]coi(]p)—i- [Ip ® ylk - l]T]COl(Af )
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" T -1.T
0=[¥ ] ¥ Y, (32)
where_
yﬁ[1+p*na]
Yf =
| yff[p*N] |
® :[q)yf Py ]
Yy :[‘szfq’ufJ
and d)uf s (Dyf and q)zf are constructed as
follows:
_uf[1+p*(na—k),:]_._.
q)uf = . k=1 to nb
i uf[p*(N-—k),:] IR
[y i+ p*a-n.a) ]
(Dyf = . k=1 to na
i —yrlp* (N —K),1] |
__—zf[1+p*(na—k),:]_m_
CDZf = . k=1 to na
i —zf[p*(N—k),:]

6- If no convergence, go to step 3.

Remark 3.1:
The convergence test used in the last step of the algorithm
is the relative error of the parameters in percent defined as:

A A

100 9(i+1) -0(3) (33)

(i) 2

A

where () denotes the estimated parameter vector at

iteration i, and & 1is a given tolerance in percent for
terminating the iterative search.

Remark 3.2:
A stability check must be performed for both algorithms

to force all the roots of the polynomial det[A(q_l)] =0

to lie within the unit circle.

Remark 3.3:
Steiglitz and McBride [5], [6] have suggested an iterative

approach to identify a SISO linear system subject to white
noise measurement noise. Extension to MIMO systems
can be done as follows:

Algorithm (Extended Steiglitz-McBride)
I- Initialize A(q™") = I, (34)

2- Perform MIMO filtering on the signals ufk] and
yIk]

=AU, © K el ) (35)
y =A@, 8 kT (36)
w =4 @O, ® uk]’ ] (37)

A

3- Compute @ using LS method

T  -1.T
=[O, ] @ Y, (38)

Where

_yﬂ[np*na]'

L J’ff[P*N]

Cf= [(Dyfzq)uf}

and °, e (I)y " and are constructed as follows:

uf[l+p*(na—k),:]

b, = . .| k=1tonb

| uplpr -k

—yf[1+p*(na—k),:]

(Dyf = . k=1 to na

|l |-

4- If no convergence, go to step 2.

The Steiglitz-McBride technique is therefore close to
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the SRIV technique. The main difference lies in the fact
that the SRIV method uses the 1V method while the
Steiglitz-McBride technique utilizes the LS method only.

4. Examples

The features of the MIMO SRIV are illustrated in two
examples. The first is a simulation of a linear plant and the
second is a simulation of a laboratory nonlinear quadruple
tank process.

4.1 Simulation Example

A simulation example is presented to illustrate the
performance of the MIMO SRIV method as compared to
that of the MIMO IV4 and MIMO Least squares
estimation methods. Let's consider the 2-input 2-output
process (ie, p=m=2) described in LMFD as:

k1= 47 g ) Bg k] + ok

(39)
where
1. {1 0] Jos -04] -1 [-01 03] _»
A = + +
@) {0 1} {0.3 —0.6}] {0.2 0.3}’
114035g 101972 —0.4g 103472
03¢ 1402¢72  1-0.6g7 403472
1. [-01 -09] -1 [08 —03] o
B = +
@) {o.z 0.3}1 {0.1 0.7}’
0171208472 —0.94 103472
0271401472 03471407472
-1
The aim is to estimate the matrix polynomials Alg ™)

-1
and B(g™) from I/O data contaminated by white noise.
A PRBS data sequence of length N=1000 is used to excite
the system.

A Monte Carlo simulation of 100 experiments has been
performed for signal to noise ratio equal to 10 db for both
outputs.

The Monte Carlo Simulation (MCS) results are
presented in Table 1 where the mean and standard
deviation of the estimated parameters are displayed.

It can be seen from Table 1 that both the MIMO SRIV
and the IV4 algorithms deliver unbiased and quite
accurate results.

Table 1. MCS results

139

MIMO SRIV MIMO 1V4
A _ _ -
y 0.5020 £0.0235  ~0.3974 £ 0.0279 05018 +0.0256  ~0.3982 % 0.0302
i
0.3040 £0.0265  ~0.6018 +0.0274 [ 03057 0.0067 0597000319 ]
~ - —_ — =
4 0097400250 03024 +0.0292 ~0.0979 £0.0283 03007 £ 00312
2
L 01983+ 0.0285 0299500241 | [ 02030£00333 02955 +0.0281 ]
A _ - - -
B -0.0979£ 00147  ~0.9008 +0.0138 ~0.0974£ 00169 09010 00169
1
| 0.2010+0.0173 0.2999 £ 0.0158 _| L 0200100219 0.2979+0.0195 |
n
B -0.8001 £ 00181 03012+ 040222} 08016 0.0191 03010+ 0.0275
2
0.0959 £ 00215 0.6948 +0.0277 0096900232 06957 £0.0275

To see the influence of the noise level on parameter

estimation,

some Monte Carlo

simulations of 100

experiments have been performed for different values of
SNR ratios varying from | to 20 dB. For each run of a

Monte Carlo Simulation new noise sequences

are

generated in order to give independent realizations.

The performance index used for comparison is the
Mean Normalized Errors (MNE) which is a measure of
bias of the estimates from the true value and is defined as:

where

MNE =100

|6-Omeanll,
25

value and ¢ is the true parameter value.

The results are shown in Table 2.

Table 2. MNE for different values of SNRs.

(40)

0 . S
mean is the mean of the estimation parameter

SNR (dB) (QARTE) ?f\l;f) MNE (LS)
1 1.7760 2.7446 44.4156
5 0.6392 0.8673 30.6596
10 0.5536 0.6188 16.9639
15 0.2582 0.3429 8.4333
20 0.0750 0.0761 3.5382
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From Table 2 we can see that the MIMO SRIV is more
immune to noise than MIMO IV4. Of course the MIMO
Least Squares gives bad estimates as expected.

4.2. Quadruple tank process

The system under consideration is a laboratory pilot
plant [7] composed of four interconnected water tanks and
its schematic diagram is shown in figure 1. Such a process
is widely used in industrial applications where we need to
maintain a desired level of liquid in a recipient as is the
case in chemical or pharmaceutical engineering.

“1 and ¥2 (input voltages to

h

The process inputs are

the pumps) and the outputs are hy and ™ (voltages
from level measurement devices). The position of the

three-way valves (71 and V2 6[0,1] ) determine the
portion of the output flow going into the upper tank from
each pump.

Using the mass balance equations and Bernoulli's law,
the system can be described by the following differential
equations:

dhl
B 2gh +—2ghy +
dt
dh
2
2.2 2gh, 4/
at 4 4
(41)
@ ( )
dt 43
dh4 oy (1—71)k1
=-—\2gh, 4 |
dt 4y 4y
i
Tank3 Tank4

Pump 1

Fig. 1. Schematic diagram of the 4 tank process

The numerical values of the plant parameters [7] are
listed in Table3.

Table 3. Model parameters of the quadruple tank

Variable Symbol Value
. INDY 28 cm’
Tanks cross section areas A A, 28 om?
Cross sectional areas of a; a3 0.071 cm®
the output holes a, a, 0.057 cm®
. Kk, 3.33 cm’/(V )
Outflow coefficients ky 3.35 cm*/(V.s)
Valves setting Y1 0.7
coefficients Y2 0.6
Level sensor coefficient K. 0.5 V/cm
Gravitation constant g 981 cm/s”

The quadruple tank process is simulated using simulink
as shown in figure 2. A 10 bit analog to digital converter
with a [0, 10] range is simulated using a zero-order hold
block followed by quantizer and saturation blocks.
Whereas a 10 bit digital to analog converter is simulated

using a quantizer followed by a saturation block.

5 e
[ ] -l.
it #I—FI o L, ke zamOmer ADGT  SETr,womgae
From TAST Satumaion_1 3 HGENEE
Wonkpatel 7 ]
ZemixGer  ADCZ  SaiZ
ATANKS o s Towanesscet
Insdnr
e » IF I Tem
Fram DACZ Saluratian_3
Worlpace
Iremmuratart

Fig. 2. Data acquisition for the simulated process

To identify a two-input two-output linear model of this
nonlinear process around the chosen steady state operating
point given in Table 4 we have followed the following
steps:

1) the plant is driven to the steady state operating
point by applying constant voltages ,,=3 volts and

U,,= 3 volts.

2) then a *0.1 volts PRBS signal is added to each
input to excite the system.
3) the I/O data are collected then the steady state

values from Table 1 are subtracted from them.
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4) 10 dB white noise is added to the output data.
5) finally the MIMO SRIV algorithm is applied to the

Au

final noisy 1/O data An, and i

where
Ah, =h;, —h,, Au,=u, -u, and i 6[1’2]

The obtained input and output data of the experiment
are shown in figure3.

Table 4. Steady state values

Steady state operating point Value

hyg hyo 12.24,12.77 cm

h30, h40 1.64, 1.40 cm

Uy, U0 3,3V

0.1 e

005i; ~—-!

u1-u10 Volts
o
I,
t

500 1000 1500 2000 2500 3000 3500 4000

2
oS
>
o 0 i--- N
9 i
S -0.05| S i
01 e -
0 500 1000 1500 2000 2500 3000 3500 4000
0.5
2
o ’ th
z RSN T
2 OQ"\\ UTRILTTE s W\
S WL
b ' J[\Y\,k E K w ' o
oo i ¥
05: P
0 500 1000 1500 2000 2500 3000 3500 4000

h2-h20 Voits

0 500 1000 1500 2000 2500 3000 3500 4000

Fig. 3. Noisy Input and Output data

The obtained two-input two-output LMFD model of the
quadruple tank process around the chosen operating point
using the MIMO SRIV is:

Arlk1 =4 DB aulk (42)
where

1

1-0.9831¢ !

1 1-0.9778q
Alg )= !
~0.0083¢~

00096 }

_1 10045041 0.011547]
Blg )= : |
0.0022¢~1 0.03394~

The computed mean square error [2] using MIMO
SRIV is  0.00181559157552 whereas MIMO V4 and
MIMO ARX gave us 0.00190628448072 and
0.01134863885998 respectively.

5. Conclusion

This paper has presented an extension of the SRIV
algorithm to MIMO systems described by a Left Matrix
Fraction Description using the Kronicker product. Block
filtering of the input/output as well as  iterativity are
the main features of the algorithm. The Monte Carlo
simulations that are conducted for different signal to noise
ratios revealed the superiority of the algorithm over the
MIMO V4 and the MIMO least squares algorithms.
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