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1. INTRODUCTION 
 

One of the main problems with mathematical models of 
physical systems is that the parameters used in the models 
cannot be determined with absolute accuracy.  Inaccurate 
parameters can arise from many different factors.  The values of 
parameters may change with time or various effects.  These 
differences existing between the actual system and system 
model is called uncertainty.  However, the actual system 
parameters may change during operation or the input signal 
takes too large.  In these cases, the linear model is no longer 
representing the actual system and causes practical problems. 
Therefore, a robust controller is needed to stabilize these types 
of systems for the entire range of expected variations in the 
plant parameters. 

This paper presents a quadruple-tank control system using 
I-P controller design by CDM [4].  By using the Structure of the 
I-P Controller in the controlled system, it is not necessary to use 
the prefilter.  The parameter of I-P controller is designed based 
on the stability and the speed of controlled system, which are 
defined in the term of the standard stability index and the 
equivalent time constant.  When the settling time of the 
controlled system has been selected, the equivalent time 
constant is obtained.  The stability index and the equivalent 
time constant specify the coefficients of the characteristic 
polynomial.  These coefficients are related to the controller 
parameters algebraically in explicit form.  Hence, the transient 
and the steady state performances can be obtained as desired. 

The step responses of the controlled system using I-P 
Controller compared to the step responses of the controlled 
system using PI Controller tuned by relay feedback method [1] 
are shown by various MATLAB’s numerical examples.  The 
step responses of the controlled system using I-P controller has 
little overshoot and reaches the desired settling time without 
adjustment as mentioned [4], it is better than the step response 
of the controlled system using PI controller designed by relay 
feedback method.  Furthermore, the I-P controller can reduce 
the effect of interaction between two-loops of outputs better 
than PI controller.  The numerical results of step responses for 
both minimum and non-minimum phase system are also show a 
good robustness when the plant parameters are varied. 
 

2. QUADRUPLE-TANK PROCESS 
 

Consider the quadruple-tank process shown in Fig. 1.  This 
laboratory process has been used to illustrate many issues in 
multivariable control [1].  The target is to control the level in 
the lower two tanks with two pumps.  The process inputs are 1u  
and 2u  (input voltages to the pumps) and the outputs are 1y  
and 2y  (voltage from level measurement devices).  The linear 

 
 

Fig. 1 Schematic diagram of the quadruple-tank process 
 
-ised dynamics for the process is given as 
 

1 1 2 1

1 3 1

1 2 2 2

4 2 2

(1 )                     
1 (1 )(1 )

( )
(1 )              

(1 )(1 ) 1

c c
sT sT sT

G s
c c

sT sT sT

α α

α α

− 
 + + + =

− 
 + + + 

,   (1) 

where 
02 , 1, ,4i i

i
i

A hT i
a g

= = "           (2) 

 
and 1 1 1 1/cc T k k A= , 2 2 2 2/cc T k k A= .  Here iA is the 
cross-sectional area of tank i ,  ia  is the cross-sectional area of 
the outlet hole,  0

ih  is the steady-state water level,  ik  is the 
gain of the pump i ,  ck  is the measurement gain, and g  is the 
acceleration of gravity.  The parameters 1 2, (0,1)α α ∈  are 
determined from how the valves are prior set to an experiment;  
the flow to tank 1 is proportional to 1α and the flow to tank 4 is 
proportional to 1(1 )α− , and similarly for 2α  with respect to 
tank 2 and tank 3.  Since 
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and transfer matrix G  has two finite zeros for 1 2, (0,1)α α ∈ . 

 
I-P Controller Design for Quadruple-Tank System 

Tianchai Suksri, Viriya Kongratana, Arjin Numsomran, Thanit Trisuwannawat and Kitti Tirasesth 
Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand 

(Tel : +66-2-326-4203/-4; Fax : +66-2-326-4203/-4 Ext. 103; E-mail : ktkitti@kmitl.ac.th ) 
 
Abstract: A control system design with Coefficient Diagram Method (CDM) is proven that effective for SISO control design. But 
the control system design for MIMO via CDM is not concrete procedure. In this paper presents the control system design method for 
quadruple-tank process via CDM. By using the decentralized method for both non-minimum phase and minimum phase are made. 
The results from Integral-Proportional (I-P) controller’s design via CDM and standard Proportional-Integral (PI) controls are also 
shown to compare the merits of the proposed controllers. 
 
Keywords: Quadruple-Tank, CDM 

 



ICCAS2003                           October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea 

 

 
The system is non-minimum phase for 

1 20 1α α< + < , 
and minimum phase for 

1 21 2α α< + < . 
Hence, by changing a single valve we can make the 

multivariable level control problem more or less difficult.  
The relative gain (RGA) was introduced by Bristol [2] as a 

measure of interaction in multivariable control systems.  The 
RGA Λ  is defined as (0) * (0)TG G−Λ = , where the asterisk 
denotes the schur product (element-by-element matrix 
multiplication) and T−  inverse transpose.  It is possible to 
show that the elements of each row and column of Λ  sum up 
to one, so for a 2 2×  system the RGA is determined by the 
scalar 11λ = Λ .  The RGA is used as a tool mainly in the 
process industry to decide on control structure issues such as 
input-output pairing for decentralized controllers [3].  The RGA 
of the Quadruple-Tank Process is given by the simple 
expression  

1 2

1 2 1
α αλ

α α
=

+ −
, 

where 
1

1
λ λ

λ λ
 
 
 

−
Λ =

−
. 

The physical modeling and RGA of minimum phase system 
and non-minimum phase system give the two transfer matrices 
as follows [1]: 
 
2.1 Case of minimum phase system 
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2.2 Case of non-minimum phase system 
 

1.5 2.5                      
1 63 (1 39 )(1 63 )

( )
2.5 1.6               

(1 56 )(1 91 ) 1 91
0.635 1.635

1.635 0.635

s s s
G s

s s s

 
 
 
 
  
 
 
 

+ + +
=+

+ + +
−

Λ =− −

 (5) 

 
3. STRUCTURE OF THE CONTROL SYSTEM 

WITH I-P CONTROLLER 
 

From RGA analysis suggests that input-output pairing for 
decentralized control be chosen.  In case of minimum phase 
system, transfer function 11G  and 22G  are used for design the 
controller, but the case of non-minimum phase system the 
transfer function 12G and 21G  are instead used. 

The structure of MIMO control system using I-P controller 
for minimum phase and non-minimum phase are shown in Fig.  
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Fig. 2  Structure of the MIMO minimum phase control system 
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Fig. 3  Structure of the MIMO non-minimum phase control 
system. 
 
2 and Fig. 3 respectively,  where 
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The transfer functions used for design are: 

 
3.1 Case of minimum phase system 
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Characteristic equation is 
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Loop 2 (Y2-R2), 
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Characteristic equation is 
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3.2 Case of non-minimum phase system 
 

Loop 1 (Y1-R2), 
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Loop 2 (Y2-R1), 
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4. COEFFICIENT DIAGRAM METHOD 

 
The CDM is used for design the controller so that the step 

response of the controlled system satisfies both transient and 
steady state response specifications, and also satisfies the 
requirements of stability, faster response and robustness.  
Generally, the order of the controller designed by CDM is lower 
than the order of the plant [4].  However, when using the I-P 
controller for the first order plant, the order of the controller is 
equal to the order of the plant, and for the second order plant, 
the order of the controller is lower than the order of the plant 
equal one, but the integrator of the 1( )cG s  and 2 ( )cG s  
virtually makes the plant to be second order and third order 
respectively.  Thus, the CDM condition is satisfied. 

The polynomials form of the controller and the plant are 
generally be written respectively in the form [4] 
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and 
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where kλ <  and m k< . 

 
The polynomials characteristic equation from Fig. 2 and Fig. 

3 can be written in the form 
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where 0 1, , , na a a"  are the real coefficients. 

The stability index iγ , the equivalent time constant τ  and 
the stability limit *

iγ  are defined as follows: 
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From equation (13) - (15), the coefficients ia  and the 

characteristic equation ( )P s  is  
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4.1 Case of minimum phase system 
 

From equation (12) and (17), the characteristic equation can 
be expressed as 
 

2
2 1 0( )P s a s a s a− = + + .           (18) 

 
4.2 Case of non-minimum phase system 
 

In the same way, the characteristic equation for this case is 
 

3 2
3 2 1 0( )P s a s a s a s a+ = + + + .         (19) 

 
The coefficients in equation (12) came from the chosen 

stability index iγ  and equivalent time constant τ .  By equating 
the ( )P s  of equation (12) with the ( )P s−  of equation (18) or 
the ( )P s+  of equation (19), such that the I-P controller for each 
case are obtained. 
 

5. NUMERICAL EXAMPLES 
 

In this section, the design procedures of I-P Controller via 
CDM for both cases are verified through the MATLAB.  The 
step responses of the control systems that employ the proposed 
I-P controller and the PI controller tuned by relay feedback 
method [1] are also be compared. 
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5.1 Case of minimum phase system 
 

Loop 1 (Y1-R1) 
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G s
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Here, the desired settling time 20st =  secs, then the 
equivalent time constant 8τ = . The stability index 1 3γ =  is 
chosen, hence the ( )P s−  can be expressed as 

2( ) 62 23.427392 2.927938P s s s− = + + . 
Equated the above ( )P s−  to the 11( )P s−  of the plant with the 

I-P controller in the equation (6), then the I-P controller is 
1 18.62592 1.12613p iK K= =,      . 

Loop 2 (Y2-R2) 

22
2.8( )

90 1
G s

s− =
+

 

In the same manner, the ( )P s−  is  
2( ) 90 33.445812 4.179084P s s s− = + + . 

Equated the above ( )P s−  to the 22 ( )P s−  of the plant with 
the I-P controller in equation (7), the I-P controller is 

2 211.58779 1.49253p iK K= =,      . 
 

 
(a) 

 
(b) 

Fig. 4. Step responses of minimum phase system 
 

The step response in Fig. 4(a) is for the tank 1 and Fig. 4(b) 
is for tank 2. In both figures, it is evidence that the settling time 
from the proposed I-P controller is satisfied for both tanks, 
while the responses obtained from PI controller tuned by relay 
feedback method have more than effect from the interaction 
among the tanks.  
 

 
5.2 Case of non-minimum phase system 
 

Since the I-P controller cannot be achieved by specifying the 
settling time st , the equivalent time constant τ  is obtained by 
specifying the values of the stability index 2 1,γ γ . Then the 
equivalent time constant τ  and parameter iK  and pK  of I-P 
controller are obtained by equating the characteristic 
polynomial (12) to the characteristic polynomial (19). 

Loop 1 (Y1-R2) 
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Selected the stability index 1 23 and 2γ γ= = , then τ =  
146.5  secs, and settling time st is approximate 366.25 secs.  
The ( )P s+  is then 

3 2( ) 2457 104.5 2.1312925 0.014684P s s s s+ = + + + . 
Equated the above ( )P s+  to the 12 ( )P s+  of the plant with 

the I-P controller in equation (8), the I-P controller is 
2 20.452517 0.0058736p iK K= =,      . 

Loop 2 (Y2-R1) 

21 2
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In the same manner, from the selected 1 23 and 2γ γ= = , 
then 206.145τ = secs and settling time st  is approximate 
515.3625 secs. The ( )P s+  is then 

3 2( ) 5096 149.5 2.1065075 0.01011P s s s s+ = + + + . 
Equated the above ( )P s+  to the 21( )P s+  of the plant with the 

I-P controller in equation (9), the I-P controller is 
1 20.442603 0.004044p iK K= =,      . 

 

 
(a) 

 
(b) 

Fig. 5. Step response of non-minimum phase system 
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The step response in Fig. 5(a) is for the tank 1 and Fig. 5(b) 

is for tank 2.  Although the responses from the proposed I-P 
controller of tank 1 compared with the PI Controller has the 
effect from the interaction more than PI controller, but the 
response of tank 2 is clearly shown that it differ from the 
response of the PI controller so much. Then we can conclude 
that even the plant is a non-minimum phase system, the 
proposed controller also be suitably applied. Moreover, the 
settling time are satisfied for both tanks with small in 
overshoots. 
 
5.3 Case of the system with parameters 1α  and 2α changed 
 

In order to investigate the plant with variation of parameters 
1 2,α α  of the quadruple-tank are changed 10%± , we also 

classify the results in two cases as follows: 
 

Case of minimum phase system 
 

 
(a) 

 
(b) 

Fig. 6 Step responses of minimum phase system when 1 2,α α  
varied 10%±  
 

The step responses of the control system when 1 2,α α  are 
changed 10%±  shown in Fig. 6(a) for tank 1 and Fig. 6(b) for 
tank 2 respectively.  It is obviously seen that the responses from 
I-P controller has a little changed, while the responses from PI 
controller are more observable change. 
 
 
 
 
 

 
Case of non-minimum phase system 

 
This case is look like the case of nominal plant without the 

changing of 1 2,α α as in section 5.2.  That is the response of 
tank 2 from the I-P controller is still better than that of the PI 
controller as well. 
 

 
(a) 

 
(b) 

Fig. 7 Step responses of non-minimum phase system when 
1 2,α α  varied 10%±  

 
6. CONCLUSION 

 
The design procedures of the I-P controller by CDM for 

quadruple-tank process have been proposed in this paper.  The 
step responses between the proposed I-P controller and PI 
controller are compared for both minimum and non-minimum 
phase systems to verify that the transient and steady state 
response specifications are obtained with robustness in all 
cases. 
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