• Title/Summary/Keyword: Quadrilateral mesh

Search Result 74, Processing Time 0.027 seconds

A TWO-DIMENSIONAL FINITE VOLUME METHOD FOR TRANSIENT SIMULATION OF TIME- AND SCALE-DEPENDENT TRANSPORT IN HETEROGENEOUS AQUIFER SYSTEMS

  • Liu, F.;Turner, I.;Ahn, V.;Su, N.
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.215-241
    • /
    • 2003
  • In this paper, solute transport in heterogeneous aquifers using a modified Fokker-Planck equation (MFPE) is investigated. This newly developed mathematical model is characterised with a time-, scale-dependent dispersivity. A two-dimensional finite volume quadrilateral mesh method (FVQMM) based on a quadrilateral background interpolation mesh is developed for analysing the model. The FVQMM transforms the coupled non-linear partial differential equations into a system of differential equations, which is solved using backward differentiation formulae of order one through five in order to advance the solution in time. Three examples are presented to demonstrate the model verification and utility. Henry's classic benchmark problem is used to show that the MFPE captures significant features of transport phenomena in heterogeneous porous media including enhanced transport of salt in the upper layer due to its parameters that represent the dependence of transport processes on scale and time. The time and scale effects are investigated. Numerical results are compared with published results on the some problems.

Quadrilateral Irregular Network for Mesh-Based Interpolation

  • Tae Beom Kim;Chihyung Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.439-459
    • /
    • 2023
  • Numerical analysis has been adopted in nearly all modern scientific and engineering fields due to the rapid and ongoing evolution of computational technology, with the number of grid or mesh points in a given data field also increasing. Some values must be extracted from large data fields to evaluate and supplement numerical analysis results and observational data, thereby highlighting the need for a fast and effective interpolation approach. The quadrilateral irregular network (QIN) proposed in this study is a fast and reliable interpolation method that is capable of sufficiently satisfying these demands. A comparative sensitivity analysis is first performed using known test functions to assess the accuracy and computational requirements of QIN relative to conventional interpolation methods. These same interpolation methods are then employed to produce simple numerical model results for a real-world comparison. Unlike conventional interpolation methods, QIN can obtain reliable results with a guaranteed degree of accuracy since there is no need to determine the optimal parameter values. Furthermore, QIN is a computationally efficient method compared with conventional interpolation methods that require the entire data space to be evaluated during interpolation, even if only a subset of the data space requires interpolation.

Automatic Generation of Hexahedral Meshes in Shell Structures (쉘 구조물에서 육면체 요소망의 자동 생성)

  • Lee B.C.;Chae S.W.;Kwon K.Y.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-48
    • /
    • 2006
  • This paper describes hexahedral mesh generation for various shell structures, such as automobile bodies, plastic injection mold components and sheet metal parts by using chordal surfaces. After generaling one-layered tetrahedral mesh by an advancing front algorithm, the chordal surfaces are constructed by cutting of tetrahedral elements. Since the choral surfaces are composed of tri/quad elements with poor quality, they are transformed into quadrilateral elements with good quality. Hexahedral elements are then generated by offsetting these quadrilateral elements. The boundary nodes of hexahedral elements are generated on the outer surfaces of the original shell structures. Sample models including nonuniform thickness have been tested to validate the proposed algorithm.

On Reasonable Boundary Condition for Inclined Seabed/Structure in Case of the Numerical Model with Quadrilateral Mesh System (사각격자체계 수치모델에서의 경사면 처리기법에 관하여)

  • Hur, Dong-Soo;Lee, Woo-Dong;Bae, Ki-Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.591-594
    • /
    • 2008
  • Present study aims at the development of a reasonable boundary condition for a structure over inclined seabed in case of the numerical model with quadrilateral mesh system. The technique for the inclined impermeable/permeable boundary in the quadrilateral mesh is newly proposed. The new technique and LES-WASS-3D model (Hur and Lee, 2007) have been used for the investigation of the dynamics of fluid field, and validated through the comparison with a typical stair-type boundary condition. 3-Dimensional numerical model with Large Eddy Simulation is called LES-WASS-3D, and is able to simulate directly interaction of WAve Structure Sea bed/Sandy beach.

Code Development for Conductive/Convective Heat Transfer on 2D Unstructured Mesh (2차원 비정렬 격자를 이용한 전도 및 대류 열전달 계산 코드 개발)

  • Chae E. .M.;Sah J.-Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.123-127
    • /
    • 1998
  • A computer code has been developed for an analysis of conduction and convection heat transfer on a personal computer. FVM based on unstructured mesh has been employed for triangular and quadrilateral element. All variable of p, u, v, T, k and ${\varepsilon}$ has been defined on a node (not on a center of element). The code possesses the pre-and post-processor for itself to provide user-friendly interface.

  • PDF

Adaptive mesh refinement for 3-D hexahedral element mesh by iterative inserting zero-thickness element layers (무두께 요소층을 이용한 육면체 격자의 반복적 적응 격자 세분)

  • Park C. H.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.79-82
    • /
    • 2004
  • In this study, a new refinement technique for 3-dimensional hexahedral element mesh is proposed, which is aimed at the control of mesh density. With the proposed scheme the mesh is refined adaptively to the elemental error which is estimated by 'a posteriori' error estimator based on the energy norm. A desired accuracy of an analysis i.e. a limit of error defines the new desired mesh density map on the current mesh. To obtain the desired mesh density, the refinement procedure is repeated iteratively until no more elements to be refined exist. In the algorithm, at first the regions of mesh to be refined are defined and, then, the zero-thickness element layers are inserted into the interfaces between the regions. All the meshes in the regions, in which the zero-thickness layers are inserted, are to be regularized in order to improve the shape of the slender elements on the interfaces. This algorithm is tested on a simple shape of 2-d quadrilateral element mesh and 3-d hexahedral element mesh. A numerical example of elastic deformation of a plate with a hole shows the effectiveness of the proposed refinement scheme.

  • PDF

Development of an Automatic Two-Dimensional Mesh Generator using an Inward Offset Boundary Technique

  • Choi, Jin-Woo;Kim, Yohng-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.61-66
    • /
    • 2003
  • An excellent mesh construction is of Importance in yielding good results of finite element analysis. The new mesh generation algorithm, which offsets boundaries inward, was developed on the basis of a looping method. An user interface technique and automatic splitting lines which both divide a given domain into subdomains manually or automatically, were used. In addition, the separation method has advantages to prevent the large scale of element size and to control numbers of nodes and elements. This new mesh generation algorithm was proved in practice.

  • PDF

Quadrilateral mesh fitting that preserves sharp features based on multi-normals for Laplacian energy

  • Imai, Yusuke;Hiraoka, Hiroyuki;Kawaharada, Hiroshi
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.88-95
    • /
    • 2014
  • Because the cost of performance testing using actual products is expensive, manufacturers use lower-cost computer-aided design simulations for this function. In this paper, we propose using hexahedral meshes, which are more accurate than tetrahedral meshes, for finite element analysis. We propose automatic hexahedral mesh generation with sharp features to precisely represent the corresponding features of a target shape. Our hexahedral mesh is generated using a voxel-based algorithm. In our previous works, we fit the surface of the voxels to the target surface using Laplacian energy minimization. We used normal vectors in the fitting to preserve sharp features. However, this method could not represent concave sharp features precisely. In this proposal, we improve our previous Laplacian energy minimization by adding a term that depends on multi-normal vectors instead of using normal vectors. Furthermore, we accentuate a convex/concave surface subset to represent concave sharp features.

A Mesh Generation Method to Estimate Welding Deformation for Shell Structures (쉘 구조물의 용접 변형량 예측을 위한 요소망 생성 방법)

  • Kwon, Kiyoun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.2
    • /
    • pp.143-150
    • /
    • 2016
  • In shipbuilding, hull assemblies are manufactured by welding. The thermal deformation caused by the welding produces shape deformation. Counter-deformed design methods have been used in shipyards to cope with the weld-induced deformation of ship assembles. Finite element methods (FEMs) are frequently used to estimate welding distortion in the counter-deformed design. For the estimation of welding distortion, producing uniform rectangular elements is required to enter thermal loads on the welding line and obtain accurate analysis results. In this paper, a new automatic mesh generation method is proposed for prediction of welding deformation in FEM. Meshes are constructed for test cases to demonstrate the feasibility of the proposed mesh generation method.