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Abstract

Numerical analysis has been adopted in nearly all modern scientific and engineering fields due to the 

rapid and ongoing evolution of computational technology, with the number of grid or mesh points in a 

given data field also increasing. Some values must be extracted from large data fields to evaluate and 

supplement numerical analysis results and observational data, thereby highlighting the need for a fast 

and effective interpolation approach. The quadrilateral irregular network (QIN) proposed in this study 

is a fast and reliable interpolation method that is capable of sufficiently satisfying these demands. A 

comparative sensitivity analysis is first performed using known test functions to assess the accuracy 

and computational requirements of QIN relative to conventional interpolation methods. These same 

interpolation methods are then employed to produce simple numerical model results for a real-world 

comparison. Unlike conventional interpolation methods, QIN can obtain reliable results with a guaran-

teed degree of accuracy since there is no need to determine the optimal parameter values. Furthermore, 

QIN is a computationally efficient method compared with conventional interpolation methods that re-

quire the entire data space to be evaluated during interpolation, even if only a subset of the data space 

requires interpolation.
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Spatial interpolation is essential in many scientific and engineering fields to ensure 

the accurate and effective evaluation of physical data in a continuous domain. Numerous 

spatial interpolation techniques have been introduced, with these approaches possessing 

various degrees of complexity (Lam, 1983; Myers, 1994; Webster and Oliver, 2007; Li 

and Heap, 2008); however, selecting the best technique that produces reliable and accu-

rate results is difficult. While various studies have attempted to construct mechanisms for 

choosing and evaluating the methods that best suit the actual data (Caruso and Quarta, 

1998; Li and Heap, 2011), the various factors that affect the performance of spatial inter-

polations generally indicate that no method is always optimal for specific situations. A 

method that works well with one dataset may be unsuitable for a different dataset 

because the interpolated results are strongly dependent on the characteristics of the data. 

Therefore, comparative studies have recently focused on identifying the optimal method 

for specific objects of a given study. For example, Sun et al. (2009) compared interpola- 
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tion methods using data obtained over 22 years on the temporal and spatial variations of groundwater depth in a specific 

study area. Tabios III and Salas (1985), Keblouti et al. (2012), and Wagner et al. (2012) evaluated various methods to find 

the most appropriate interpolation method for sparse precipitation data. Piazza et al. (2011) conducted a comparative 

study on various methods for the estimation of missing data in rainfall time series. Teegavarapu et al. (2012) developed 

and estimated spatial interpolation weighting methods for the transformation of hourly multisensory precipitation data 

from one grid to another with different sizes and orientations. Rap et al. (2009) compared interpolation methods for 

aerosol-cloud parameterization in global climate modeling.

As computational techniques have improved, numerical simulations have grown in popularity in many disciplines 

and are used as preliminary or predictive tools for specific purposes. Continuous natural objects or characteristics, 

which are generally obtained from field measurements at scattered points, must be assigned to discrete nodal points for 

numerical modeling where interpolation is used for data pre-processing. An interpolation may also be required after the 

simulation to compare the calculated results with observed values. The number of nodal points has increased from 

dozens or hundreds to thousands or more as more detailed modeling is being undertaken to evaluate datasets. Further-

more, if time is included as a variable, as done in transient modeling, then the data processing requirements can increase 

nonlinearly. Therefore, a faster and more accurate interpolation method is required to effectively evaluate large datasets. 

Alternatively, the model domain can be decomposed into several regions, thereby allowing the necessary interpolations 

to be performed within a targeted sub-region (Mitášová and Mitáš, 1993; Trochu, 1993).

This study proposes a new method using irregular quadrilateral elements to address existing limitations to interpo-

lation. This method is based on the interpolation technique used in finite element methods and can be applied to both 

rectangular grids and irregular meshes in finite-difference, finite-volume, and finite-element methods. This proposed 

method, hereafter called the quadrilateral irregular network (QIN), is similar to the triangular irregular network (TIN), 

which is a well-known conventional method. After introducing the QIN, conventional methods for the linear combina-

tion of values, such as TIN and the inverse distance weight method as well as methods based on radial basis functions, 

such as thin plate spline (TPS), completely regularized spline (CRS), dual kriging (DK), and Hardy (1971)’s multiqua-

dric method (HMQ), are briefly summarized. The QIN and other methods are then estimated using the well-known 

Franke (1979) test functions, and applied to the results of numerical modeling for a comparison of their effectiveness in 

interpolating spatial data.
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Linear combination interpolation methods share the same general form as follows:

   
  



  (1)
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where u* is the interpolated value of a variable at a target point (x, y), u is the known value at the i-th sampled point (xi, 

yi), λi is the weight assigned to the i-th sampled point, and N is the number of sampled points used for the interpolation.

Quadrilateral Irregular Network (QIN)

Finite element processes generally transform each quadrilateral element in a global coordinate system to a square 

isoparametric element that is defined in a ξ-η local coordinate system, as shown in Fig. 1. These local coordinates, ξ 

and η, are used to determine the sampling points of the Gaussian quadrature, which is a way to numerically approxi-

mate the value of an integration. A value (u) within a quadrilateral element is estimated from the nodal values of the 

isoparametric element as follows:

 
  




   (2)

where Ne (= 4 for linear quadrilateral elements) is the number of nodes in an element, ui is the known value at the i-th 

nodal point, and Ni(ξ, η) is the i-th shape function for a local element, which is defined in bilinear form (Becker et al., 

1981; Heinrich and Pepper, 1990) as follows:

   



  

   



  

   



  

   



  

 (3)
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Eqs. (1) and (2) are of the same form, except for the number of points used for the interpolation. The weights of the 

quadrilateral elements are determined by the ratio of the areas diagonally opposite the corresponding nodes to the total 

area, for example, N1 = A1/4 (see Fig. 1). Using Eq. (2), points in the local coordinate system can be mapped to corres-

ponding points in the actual global coordinate system as follows:

 
  




   (4)

 
  




   (5)

Therefore, the values of x, y, and variables in the global coordinate system can be easily estimated at a given point (ξ, 

η) within an isoparametric element through Eqs. (2)~(5). However, for a point (x, y) within an irregular-shaped quadri-

lateral element in the global coordinate system, estimation of variables at a given point is difficult because the local 

coordinate values (ξ, η) corresponding to the point are not known. Therefore, inverse mapping is necessary to estimate 

the variables.

Substitution of Eq. (3) into Eqs. (4) and (5) yields:

       (6)

       (7)

respectively, where the coefficients are a1 = (x1 + x2 + x3 + x4)/4, a2 = (-x1 + x2 + x3 - x4)/4, a3 = (-x1 - x2 + x3 + x4)/4, a4 = 

(x1 - x2 + x3 - x4)/4, b1 = (y1 + y2 + y3 + y4)/4, b2 = (-y1 + y2 + y3 - y4)/4, b3 = (-y1 - y2 + y3 + y4)/4, and b4 = (y1 - y2 + y3 - y4)/4. 

Coefficients ai and bi are known values from four nodal coordinates of a quadrilateral element. Therefore, if the coor-

dinate values (x, y) of an arbitrary point are given, then Eqs. (6) and (7) become non-linear equations of ξ and η. 

Although the numerical solution for ξ and η can be obtained through the iterative Newton-Raphson method, there is a 

possibility that a convergent solution cannot be obtained due to numerical error. Therefore, an analytic solution for ξ 

and η should be considered instead of an iterative numerical solution.

The quadratic equation for ξ such as Eq. (9) can be obtained by rearranging Eq. (6) for η and substituting the resul-

tant Eq. (8) into Eq. (7).

 
 

   
 (8)

    (9)
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where the coefficients A = a2b4 - a4b2, B = a2b3 - a3b2 + (a1 - x)b4 - a4(b1 - y), and C = (a1 - x)b3 - a3(b1 - y). The solution 

for ξ is as follows:

 

  ±    (10)

If a quadrilateral element is defined in a counterclockwise direction, then the positive square root should be applied to 

Eq. (10). Conversely, if a quadrilateral element is defined in a clockwise direction, the negative square root should be 

chosen as the solution for ξ. In addition, if coefficient A in Eq. (9) equals zero, then the quadratic equation is reduced to 

a linear equation, and the solution for ξ becomes:

  (11)

Coefficient A = 0 is equal to u1v2 - u2v1 = 0 when coefficient A is expressed by the components of vector u and v in Fig. 

2a for a detailed geometrical configuration. This means that u × v = 0, that is, the two vectors are parallel. Once ξ is 

obtained using Eq. (10) or Eq. (11), η can be estimated from Eq. (8). However, η cannot be calculated when the deno-

minator in Eq. (8) equals zero. In this case, another approach for estimating η should be considered.

The first condition that results in a zero denominator is when a3 = a4 = 0. By applying this condition to Eq. (6), a 

simplified equation such as x = a1 + a2ξ can be obtained. Therefore, substituting ξ = (x - a1)/a2 into Eq. (7) and 

rearranging the equation yield the following:

 
    

       
  (12)

To explain the geometrical meaning of this condition, the coefficients a3 and a4 can be expressed as components of 

vectors p and q in Fig. 2a:

��� ���
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 


         



  

 


         



    

 (13)

The condition a3 = a4 = 0 is only satisfied when p1 and q1 both equal zero, which means that p and q are parallel to both 

each other and the vertical axis.

The second condition is a3 = ξ = 0 and a4 ≠ 0. Substituting this condition into Eq. (6) shows that this situation occurs 

when x = a1. Substituting ξ = 0 into Eq. (7) and rearranging the equation yield as follows:

 


  
. (14)

This is the same as Eq. (12) when a1 - x = 0. Geometrically, only a3 may be zero when components p1 and q1 of vectors 

p and q in Fig. 2a are equal in magnitude and in opposite directions, as can be inferred from Eq. (13).

The third condition is when a3 ≠ 0 and a4 ≠ 0, but a3 + a4ξ = 0. Applying ξ = -a3/a4 to Eq. (6) and Eq. (7), 

respectively, yield x = a1 - (a2a3)/a4 and the relation for η as follows:

 
  

     
  (15)

It may be inefficient and time-consuming to compute ξ and η in all elements to find the element in which an 

arbitrary point is located. This is especially true when the number of elements is very large. Therefore, either rectangles 

or circles enclosing an element are utilized in this search. As shown in Fig. 3a, two opposite corners of a rectangle 

enclosing an element are compared with the coordinate (x, y) of an arbitrary point. It is then temporarily determined that 

an arbitrary point may be located within the element when the following inequality is satisfied:

��� ���
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min min≤  ≤ max max  (16)

Alternatively, the center coordinates of the circumcircle are necessary when using circles that enclose an element. As 

shown in Fig. 2b, vectors u and v1 and vectors w and v2 are perpendicular to each other, respectively, based on the 

definition of the circumcircle. That is, u ∙ v1 = 0 and w ∙ v2 = 0, and the following system of linear equations is derived.




 









 









 


  

  
 (17)

where Δvi1 = vi - v1,    = (vi + v1)/2, and xc and yc are the center coordinates of the circumcircle. Two circumcircle radii 

can be obtained through Eq. (17) when a quadrilateral is divided into two triangles, as shown in Fig. 3b. If the distance 

between one of the center points of the circumcircles and an arbitrary point is less than or equal to the radii of the 

circumcircles, it is temporarily determined that an arbitrary point may be located within the element, and the exact 

values of ξ and η can be estimated analytically. If both ξ and η are in the range of [-1, 1], then an arbitrary point is 

definitely within the quadrilateral element, and the variables can be estimated by using Eq. (2).

Triangular Irregular Network (TIN)

It is simpler to find local coordinates within triangular elements than within quadrilateral elements. The local coordi-

nates ξ and η within a triangular element can be estimated directly from global coordinates as follows (Becker et al., 

1981; Heinrich and Pepper, 1990):

 



  
  
  
  


  
  
  
  


Area of 

Area of 
 (18)

 




  
  
  
  


  
  
  
  


Area of 

Area of 
 (19)

As with quadrilateral elements, the areal ratio is also used for triangular elements. An arbitrary point is within a 

triangular element when ξ and η satisfy the following inequality:
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 ≤ ≤   ≤ ≤  and   ≤  (20)

If so, some values at an arbitrary point are interpolated from the nodal values of an isoparametric triangular element by 

using Eq. (2). The shape functions for triangular elements are as follows:

    

    

      

 (21)

which are the same as the quadrilateral elements in that the ratio of the areas diagonally opposite from the corres-

ponding nodes to the total area is used as a weight (see Fig. 1). As in the quadrilateral, it can be preliminarily evaluated 

whether or not an arbitrary point is located within the element by using either a rectangle or circle that encloses a 

triangular element.

Inverse Distance Weight Method

In distance weighting interpolation methods, the weight of the i-th sampled point is defined as a function of the 

distance from the target point to the sampled points, given in general as follows:

 



  






 (22)

where function f(di) is defined as di
p, and di is the distance from the target point to the i-th sampled point. When the 

power parameter p of -2 or -1 is selected, this is called the inverse square distance (ISD) or reciprocal distance weight 

(RDW) method, respectively. Therefore, the weights diminish as the distance increases, and the values sampled nearby 

have more influence on the estimation. When the target point coincides with one of the sampled points, the value of the 

target point should take the value of the sampled point because the weight becomes infinite. For wide areas or for large 

data sets, the searching radius or threshold distance (dmax) may be set (Caruso and Quarta, 1998), and the function of 

distance is defined as follows:

  
 for  ≤ max

 for   max

 (23)

This situation is called localized ISD or localized RDW (Wagner et al., 2012).
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Interpolation functions based on the radial basis function have the following general form (Talmi and Gilat, 1977; 

Mitášová and Mitáš, 1993):

     
  



 (24)

   
  



   (25)

where R(∙) is a radial basis function, T(∙) is called the trend function, fk(∙) is a set of linearly independent monomial 

functions, and αk and βj are coefficients. Once the radial basis function is determined, the coefficients αk and βj can 

be obtained by solving the following system of linear equations.

      for     ⋯


  



      for     ⋯

 (26)

In a geostatistical framework, Eq. (25) is called a drift, the second term on the right hand side of Eq. (24) is called a 

fluctuation, and the function R(∙) within the second term on the right hand side of Eq. (24) is replaced with the function 

K(∙), which is called the generalized covariance. The final M equations in Eq. (26) are called the no-bias condition, 

which shows that the trend function or drift represents the mean of sampled values. Therefore, the fluctuation term is 

adjusted so that the interpolation coincides with the data points (Trochu, 1993).

Thin Plate Spline (TPS)

Duchon (1976) proposed the following trend and radial basis functions for the TPS interpolation method.

      (27)

  
 ln  (28)

Therefore, coefficients αk (1 ≤ k ≤ 3) and βj (1 ≤ j ≤ N) in Eq. (24) are characterized by the following linear system.
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      for     ⋯


  



  
  



  
  



  

 (29)

Completely Regularized Spline (CRS)

Mitášová and Mitáš (1993) derived a new interpolation method called the completely regularized spline as an alterna-

tive method to regularized TPS with tension which was developed to compensate for the shortcomings of TPS by Mitáš 

and Mitášová (1988). The trend and radial basis function of CRS are as follows:

     (30)

  ln
 










 




 (31)

where E1(∙) is the exponential integral function found in Abramowitz and Stegun (1972), CE is the Euler constant of 

0.5772156649, and φ is a generalized tension parameter that should be determined empirically. Consequently, coeffi-

cients αk (k = 1) and βj (1 ≤ j ≤ N) in Eq. (24) can be obtained from the N + 1 linear equation.

Dual Kriging (DK)

Trochu (1993) proposed the following generalized covariance for the 2-D case derived from TPS in order to incorpo-

rate the distance of influence in his dual kriging model.

 












 max

 


lnmax

  for  ≤  ≤ max

 for   max

 (32)

where c1 is a constant of 0.18393972, and c0 is a constant of 0.60653066, which is the value when the function d2lnd 

attains its minimum; -c1 = c0
2lnc0. The function R(∙) in Eq. (32) continuously decreases from 1 when dj = 0 to 0 when 

dj > dmax. As in TPS, the values of coefficients αk and βj in Eq. (24) can be obtained by solving N + 3 linear equations.

Hardy’s Multiquadric (HMQ) Method

Hardy (1971) proposed the following relatively simple function for the interpolation of irregular surfaces.

  
    (33)

Eq. (33) represents the multiquadric surface, which is a single cone or hyperboloid dependent upon whether Δ2 equals 
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zero or is a positive constant, respectively. In HMQ, the trend function of Eq. (25) is zero. Therefore, βj (1 ≤ j ≤ N) in 

Eq. (24) is obtained by solving linear equations of order N. For reference, the method of applying a power of -1/2 instead 

of 1/2 to the right side of Eq. (33) is called the reciprocal multiquadric (RMQ) method, and successful applications of 

HMQ in various disciplines can be found in Hardy (1990).
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The comparison of interpolation methods described in the preceding chapter is based on the six test functions used by 

Franke (1979) in his critical comparison of interpolants for scattered data, reported as:

    exp
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 (34)

Four of the six test functions (test functions 2 and 4-6) were originally provided by McLain (1974), then slightly 

modified and scaled down from [1, 10] to [0, 1] by Franke (1979). A total of three grid networks were constructed as 

shown in Fig. 4. The first case is an 11 × 11 square grid, which has an origin of (0, 0) with both a horizontal (Δx) and 

vertical (Δy) interval of 0.1, whereby 121 total points were used to generate the test function values in Eq. (34). The 

known values in the sparse square grid were then interpolated into points on a fine grid that was rotated 60° counter-

clockwise from the horizontal axis and consisted of 20 rows and 31 columns, with its origin at (0.35, 0.02), Δx = 0.03 

and Δy = 0.02 (Fig. 4a). The second case is a 13 × 13 square grid that was rotated 15° counterclockwise from the hori-

zontal, with its origin at (0.1, -0.25), and Δx = Δy = 0.1. The 169 generated values were then interpolated to points on a 

19 × 19 fine square grid, with its origin at (0.05, 0.0), Δx = Δy = 0.05, and no rotation (Fig. 4b). The third case is a mesh 

grid consisting of 120 randomly generated points. The triangular elements were constructed from the distribution of 
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these points over the entire area, with some triangles then combined into quadrilateral elements for the QIN application. 

Therefore, the third case was divided into a fully triangular element mesh (Fig. 4c) and a mixed mesh with triangles and 

quadrilaterals (Fig. 4d). The nodal values were interpolated to points on an 11 × 11 square grid, with its origin at (0.0, 

0.0), Δx = Δy = 0.1, and no rotation. Therefore, both pure TIN and a combination of QIN and TIN (hereafter QIN&TIN) 

were applied to the third case, whereas only QIN was used for the first and second cases.
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The sensitivity analysis results, presented as a function of a given parameter for each interpolation method and test 

case, are shown in Figs. 5~7. The lower horizontal axis is the searching radius (dmax) for DK, RDW, and ISD and the 

parameter value (Δ2) for HMQ, and the upper horizontal axis is a generalized tension parameter value (φ) for CRS. 
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The vertical axis represents the corresponding RMSEs on a logarithmic scale. The resultant QIN (cases 1 and 2), and 

QIN&TIN and TIN (case 3) RMSEs, which appear as constant values, are provided for comparison with the other 

methods.
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At first, the methods using a searching radius are discussed. With RDW or ISD, the most accurate results were 

obtained with dmax of about 0.1 for the first and second cases, and about 0.2 for the third. As dmax increases from these 

values, the accuracy of the interpolants decreases. Eventually, the effect of the searching radius disappears from around 

0.6. It is difficult to find the optimal dmax when RDW or ISD is applied to complex natural phenomena. Therefore, in 

many practical applications of RDW and ISD, weighting coefficients are generally calculated using all data points 

without considering the searching radius. Although RDW and ISD are well-known and popular methods due to their 

practical simplicity, they seem to be the least sophisticated among all of the methods tested in this study when the 

searching radius is not considered. Trochu (1993) introduced the searching radius for geostatistical kriging in order to 

account for the distance of influence and, as a result, reduced the computational effort due to the derivation of banded 

structures in the kriging matrix. He mentioned that dmax should be selected carefully because it controls the smoothness 

of the interpolation, the loss in accuracy may be unacceptable when dmax is small, and there is no difference between the 

results with and without the distance of influence when dmax greater than a certain threshold value is selected. However, 

he did not indicate a specific value or range as the optimal dmax for DK. As shown in Figs. 5~7, the accuracy of DK is 

improved as dmax increases, reaching an asymptotic constant equal to the RMSE of TPS. Therefore, to avoid the 

ambiguity of dmax as a parameter and the effort of trying to find the proper value for dmax, it would be better to use TPS 

instead of DK in practice.

The influence of Δ2 on the HMQ results is now discussed. Carlson and Foley (1991) stated that larger Δ2 values are 

necessary in HMQ when using the data from spherical or quadratic-shaped functions such as test functions 4 and 6, 

whereas very small Δ2 value are required for rapidly varying or highly oscillatory sampled values. As shown in Figs. 

5~7, HMQ yields better results than the other methods for test function 4, even with relatively large Δ2 values, although 

this is not necessarily true for test function 6. Several researchers have attempted to find an optimal Δ2 value. The 

formula of Hardy (1971) yields Δ2 values of 0.011, 0.011, and 0.015, and the Franke (1979) formula yields Δ2 values of 

0.026, 0.027, and 0.034 for cases 1, 2, and 3, respectively. However, selecting these values as the optimal Δ2 values is 

not appropriate when considering the results in Figs. 5~7. Carlson and Foley (1991) argued that the optimal Δ2 value 

should be estimated with the values of the sampled data as well as the number and location of data points, and proposed 

their own method for optimal Δ2 in which the data points and values were scaled to the unit cube and interpolated by 

applying their formula for an effective Δ2 value, and then the resulting interpolants were scaled back to the original 

domain. Kansa (1990) and Kansa and Carlson (1992) suggested another method in which various Δ2 values for all data 

points were assessed rather than a constant. However, some ambiguity still remains with their method since the user 

should provide a minimum and maximum constraint and Δ2 is not dependent on the sampled values but only on the data 

points. Nonetheless, it is apparent that when a value in the range of about 0.02 to 0.3 is selected for Δ2, better results 

than the others can be obtained for all functions, with the exception of test function 4, based on the results of Figs. 5~7.

Mitášová and Mitáš (1993) reported that a generalized tension parameter φ in CRS adjusts the ratio between the 

weights of the first- and higher-order derivatives in the smooth seminorm and thus controls the behavior of the resulting 

surface from a membrane to a thin plate. They also remarked that the value of φ should be determined empirically and 

can be found within a few trials. However, as shown in Figs. 5~7, the CRS accuracy varies the most depending on the 
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selected φ value, thereby highlighting the potential difficulty in selecting the appropriate φ value. These test results 

indicate that a φ value in the range from 10 to 20 is recommended to obtain more stable and accurate CRS results.

As stated above, the results of interpolations may be greatly influenced by the selected parameter value. In addition, 

the suggested optimal Δ2 and φ ranges in HMQ and CRS, respectively, are limited to the test functions that correspond 

to the true value in this study, and can also be changed according to the number and distribution of sampled points. 

Through cross-validation methods, it is possible to find the optimal parameter value that minimizes the error of inter-

polation. However, this approach may be time-consuming and computationally intensive. Furthermore, the accuracy of 

the interpolated results for a natural phenomenon, especially time-series data which are complex and difficult to predict, 

cannot be guaranteed. Therefore, it would be preferable to use interpolation methods with no parameters and a certain 

degree of guaranteed accuracy, such as TPS and QIN.
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Fig. 8 shows an example of the numerical results of flow characteristics in a U-shaped channel. The width of the 

channel is 1.7 m, and the radius of the center line in a curved section is 4.25 m. The slope of the channel bed is 1.76471 × 

10-3. Meshes are roughly composed of quadrilateral elements for which Δx and Δy in straight reaches are 0.34 m and 

0.17 m, respectively, and Δr and Δθ in a curved reach are 0.17 m and 4.5°, respectively (here, r and θ represent the 

cylindrical coordinate system). The total number of nodes and elements is 1551 and 1400, respectively. When numerical 

modeling was performed with specific boundary conditions for the upstream and downstream ends, a slip condition in 

the lateral side walls, and a fixed bed condition, longitudinal mean flow velocity and water surface elevation were 

obtained as shown in Fig. 8. Assuming that the observational data at 61 and 15 points were regularly obtained along the 

A-A' and B-B' routes in Fig. 8a, respectively, the observational points did not coincide with the nodal points. In this 

case, it is necessary to apply interpolation methods for comparison of the observed values with the numerical results.
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The searching radius of the RDW and ISD was not considered, and a generalized tension parameter φ of 15 in CRS 

and Δ2 of 0.1 in HMQ was chosen for this application. Fig. 9 shows the interpolated results for channel bed, water 

surface, and mean velocity. Since the results for CRS, TPS, and HMQ are almost identical, they are represented by CRS 

dotted lines in Fig. 9a. The mean velocity with the QIN along A-A' shows slight differences from those obtained with 

CRS, TPS, and HMQ, while the results for channel bed and water surface are almost the same for QIN, CRS, TPS, and 

HMQ, as shown in Fig. 9a. The CRS, TPS, and HMQ show smoothed curves based on radial basis functions, while QIN 

shows a slight oscillation in the mean velocity. The RDW and ISD show more oscillatory results than the QIN, as well 

as underestimated values for the mean velocity compared with the others. On the other hand, the water surface and 

channel bed results along B-B' using HMQ in Fig. 9b show some oscillations unlike those of QIN, CRS, and TPS, while 

the interpolated mean velocity is the same for QIN, HMQ, CRS, and TPS. Since the results from the QIN are almost 

identical to those from CRS and TPS, the results from CRS and TPS are overlapped with the representative solid line for 

the QIN in Fig. 9b.
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Comparing the processing speed and results, it is clear that the ISD and RDW are superior in terms of calculation 

time, but produce inferior results when the searching radius is not considered. The CRS and HMQ with properly 

selected parameters and TPS are fairly reliable, but they are computationally intensive because the entire matrix must be 

resolved for each variable. The QIN is as fast as the ISD and RDW, and has reliable accuracy to some extent. Therefore, 

the QIN is proposed as an alternative to traditional interpolation methods for large data fields that are composed of 

quadrilateral elements.
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Analytical solutions for the inverse mapping of local coordinates in an isoparametric square element corresponding to 

the global coordinates of arbitrarily given points were proposed in this study. In addition, a method for preliminarily 

determining whether an arbitrary point is within an element with a rectangle or circumcircles enclosing an element was 

proposed for fast calculation before the estimation of exact local coordinates. Once it was determined that an arbitrary 

point was located within the quadrilateral element, the values at a target point were interpolated using shape functions of 

the finite element method when the evaluated local coordinates were between -1 and +1. The details of this proposed 

algorithm, the quadrilateral irregular network (QIN), were presented, and interpolation schemes of conventional linear 

combination methods (TIN, RDW, and ISD) and methods based on radial basis functions (TPS, CRS, DK, and HMQ) 

were briefly summarized. All of these interpolation methods were applied to six test functions and three mesh types to 

evaluate their accuracy. The results showed that parameters such as searching radius in RDW, ISD, and DK, as well as 

Δ2 in HMQ, and tension in CRS have a significant influence on the interpolation results, and that inverse distance 

methods without consideration of a searching radius produce inferior results compared with the other methods. It is 

difficult to find the optimal parameter value in practical applications because it greatly depends on sampled values as 

well as the number and location of data points. Therefore, we cautiously recommend the use of methods such as TPS or 

QIN in order to avoid ambiguity and minimize the amount of effort required for determining non-physical parameter 

values, although not all of the known interpolation methods were compared in this study. The accuracy of QIN is 

guaranteed compared with the other methods and there is no need to determine the optimal parameter values. If an 

initial mesh is maintained without changes, coordinates ξ and η within an isoparametric element for a target point can 

be saved and reused in subsequent interpolations. Consequently, the QIN is computationally more efficient than con-

ventional methods that require the interpolation values to be reevaluated using all of the nodal values, even when only 

one of the nodal values changes.
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