• Title/Summary/Keyword: Quadrature VCO

Search Result 23, Processing Time 0.027 seconds

Design of a 2.5GHz Quadrature LC VCO with an I/Q Mismatch Compensator (I/Q 오차 보정 회로를 갖는 2.5GHz Quadrature LC VCO 설계)

  • Byun, Sang-Jin;Shim, Jae-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.2
    • /
    • pp.35-43
    • /
    • 2011
  • In this paper, an analysis on I/Q mismatch characteristics of a quadrature LC VCO(Voltage controlled oscillator) is presented. Based on this analysis, a new I/Q mismatch compensator is proposed. The proposed I/Q mismatch compensator utilizes an amplitude mismatch detector rather than the conventional phase mismatch detector requiring much more wide frequency bandwidth. To verify the proposed circuit, a 2.5GHz quadrature LC VCO was designed in a $0.18{\mu}m$ CMOS process and tested. Test results show that an amplitude mismatch detector achieves similar I/Q mismatch compensation performance as that of the conventional phase mismatch detector. The I/Q mismatch compensator consumes 0.4mA from 1.8V supply voltage and occupies $0.04mm^2$.

A Quadrature VCO Exploiting Direct Back-Gate Second Harmonic Coupling

  • Oh, Nam-Jin
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.3
    • /
    • pp.134-137
    • /
    • 2008
  • This paper proposes a novel quadrature VCO(QVCO) based on direct back-gate second harmonic coupling. The QVCO directly couples the current sources of the conventional LC VCOs through the back-gate instead of front-gate to generate quadrature signals. By the second harmonic injection locking, the two LC VCOs can generate quadrature signals without using on-chip transformer, or stability problem that is inherent in the direct front-gate second harmonic coupling. The proposed QVCO is implemented in $0.18{\mu}m$ CMOS technology operating at 2 GHz with 5.0 mA core current consumption from 1.8 V power supply. The measured phase noise of the proposed QVCO is - 63 dBc/Hz at 10 kHz offset, -95 dBc/Hz at 100 kHz offset, and -116 dBc/Hz at 1 MHz offset from the 2 GHz output frequency, respectively. The calculated figure of merit(FOM) is about -174 dBc/Hz at 1 MHz offset. The measured image band rejection is 46 dB which corresponds to the phase error of $0.6^{\circ}$.

A Study on the Design of Voltage Clamp VCO Using Quadrature Phase (4분법을 이용한 전압 클램프 VCO의 설계에 관한 연구)

  • Seo, I.W.;Choi, W.B.;Joung, S.M.;Sung, M.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3184-3186
    • /
    • 1999
  • In this paper, a new structure of fully differential delay cell VCO using quadrature phase for low phase noise and high speed operation is suggested. It is realized by inserting voltage clamp circuit into input pairs of delay cells that include three-control current source having high output impedance. In this reason. this newly designed delay cell for VCO has the low power supply sensitivity so that the phase noise can be reduced. The whole characteristics of VCO were simulated by using HSPICE and SABER. Simulation results show that the phase noise of new VCO is quite small compared with conventional fully differential delay cell VCO and ring oscillator type VCO. It is also very beneficial to low power supply design because of wide tuning range.

  • PDF

Comparison of Phase Noise Characteristics of Three Quadrature Voltage Controlled Oscillators (3가지 직교신호 발생 전압제어 발진기의 위상 잡음 특성비교)

  • Moon Seong-Mo;Cho Il-Hyun;Lee Moon-Que
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.2 s.7
    • /
    • pp.73-79
    • /
    • 2005
  • Various CMOS quadrature-voltage-controlled oscillators(QVCOS) are designed and fabricated for the comparison of the phase noise characteristic. The first one is that the QVCO is composed of two Colpitts oscillators cross-coupled with PMOS coupling transistors. The second and third ones are the conventional LC VCO and the balanced Colpitts VCO followed by the frequency-divide-by-two, respectively. The simulation result demonstrate that Colpitts schemes show better phase noise performance by 6 dB than that of a conventional stheme in which LC VCO is followed by the frequency-divide-by-two.

  • PDF

Design of Quadrature CMOS VCO using Source Degeneration Resistor (소스 궤환 저항을 이용한 직교 신호 발생 CMOS 전압제어 발진기 설계)

  • Moon Seong-Mo;Lee Moon-Que;Kim Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.12 s.91
    • /
    • pp.1184-1189
    • /
    • 2004
  • A new schematic of quadrature voltage controlled oscillator(QVCO) is designed and fabricated. To obtain quadrature characteristic and low phase noise simultaneously, two differential VCOs are forced to un in quadrature mode by using coupling amplifier with a source degeneration resistor, which is optimized to obtain quadrature accuracy with minimum phase noise degradation. The designed QVCO was fabricated in standard CMOS technology. The measured performance showed the phase noise of below -120 dBc/Hz at 1 MHEz frequency offset, tuning bandwidth of 210 MHz from 2.34 GHz to 2.55 GHz with a tuning voltage varying form 0 to 1.8 V Quadrature error of 0.5 degree and amplitude error of 0.2 dB was measured with conjunction with low-lF mixer. The fabricated QVCO requires 19 mA including 5 mA in the VCO core part fiom a 1.8 V supply.

Design of a 960MHz CMOS PLL Frequency Synthesizer with Quadrature LC VCO (960MHz Quadrature LC VCO를 이용한 CMOS PLL 주파수 합성기 설계)

  • Kim, Shin-Woong;Kim, Young-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.61-67
    • /
    • 2009
  • This paper reports an Integer-N phase locked loop (PLL) frequency synthesizer which was implemented in a 250nm standard digital CMOS process for a UHF RFID wireless communication system. The main blocks of PLL have been designed including voltage controlled oscillator, phase frequency detector, and charge pump. The LC VCO has been used for a better noise property and low-power design. The source and drain juntions of PMOS transistors are used as the varactor diodes. The ADF4111 of Analog Device has been used for the external pre-scaler and N-divider to divide VCO frequency and a third order RC filter is designed for the loop filter. The measured results show that the RF output power is -13dBm with 50$\Omega$ load, the phase noise is -91.33dBc/Hz at 100KHz offset frequency, and the maximum lock-in time is less than 600us from 930MHz to 970MHz.

An Integer-N PLL Frequency Synthesizer Design for The 900MHz UHF RFID Application (900MHz UHF대역 RFID 응용을 위한 Integer-N PLL주파수 합성기 설계)

  • Kim, Sin-Woong;Kim, Young-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.4
    • /
    • pp.247-252
    • /
    • 2009
  • This paper presents an Integer-N phase-locked loop (PLL) frequency synthesizer using a novel prescaler based on a charge pump and clock triggering circuit. A quadrature VCO has been designed for the 900MHz UHF RFID application. In this circuit, a voltage-controlled oscillator(VCO), a novel Prescaler, phase frequency detector(PFD), charge pump(CP), and analog lock detector(ALD) have been integrated with 0.35-${\mu}m$CMOS process. The integer divider has been developed with a verilog-HDL module, and the PLL mixed mode simulation has been performed with Spectre-Verilog co-simulator. The sweep range of VCO is designed from 828 to 960 MHz and the VCO generates four phase quadrature signals. The simulation results show that the phase noise of VCO is -102dBc/Hz at 100 KHz offset frequency, and the maximum lock-in time is about 4us with 32MHz step change (from 896 to 928 MHz).

  • PDF

$0.13{\mu}m$ CMOS Quadrature VCO for X-band Application ($0.13{\mu}m$ CMOS 공정을 이용한 X-band용 직교 신호 발생 전압제어 발진기)

  • Park, Myung-Chul;Jung, Seung-Hwan;Eo, Yun-Seong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.8
    • /
    • pp.41-46
    • /
    • 2012
  • A quadrature voltage controlled oscillator(QVCO) for X-band is presented in this paper. The QVCO has fabricated in Charted $0.13{\mu}m$ CMOS process. The QVCO consists of two cross-coupled differential VCO and two differential buffers. The QVCO is controlled by 4 bit of capacitor bank and control voltage of varactor. To have a linear quality factor of varactors, voltage biases of varactors are difference. The QVCO generates frequency tuning range from 6.591 GHz to 8.012 GHz. The phase noise is -101.04 dBc/Hz at 1MHz Offset when output frequency is 7.150 GHz. The supply voltage is 1.5 V and core current 6.5-8.5 mA.

Comparison of phase noise characteristic of Quadrature Voltage Controlled Oscillator (직교신호 발생 전압제어 발진기의 위상 잡음 특성비교)

  • Cho, Il-Hyun;Lee, Moon-Que;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2333-2335
    • /
    • 2005
  • Various CMOS quadrature-voltage-controlled oscillators(QVCOs) are designed and fabricated for the comparison of the phase noise. The core VCO is composed of two Colpitts oscillators which are cross-coupled with PMOS pair. For the comparison of phase noise with the proposed scheme, the conventional LC VCO followed by the frequency-divide-by-two is designed. The simulation result demonstrate that the proposed scheme shows better phase noise performance by 6dB than that of a conventional scheme in which LC VCO is followed by the frequency-divide-by-two.

  • PDF