• Title/Summary/Keyword: Quadrature Error

Search Result 244, Processing Time 0.021 seconds

Double Quadrature Spatial Modulation

  • Holoubi, Tasnim;Murtala, Sheriff;Muchena, Nishal;Mohaisen, Manar
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.27-33
    • /
    • 2019
  • Quadrature spatial modulation (QSM) utilizes the in-phase and quadrature spatial dimensions to transmit the real and imaginary parts, respectively, of a single signal symbol. Improved QSM (IQSM) builds upon QSM to increase the spectral efficiency by transmitting the real and imaginary parts of two signal symbols using antenna combinations of size of two. In this paper, we propose a double QSM (DQSM) scheme that transmits the real and imaginary parts of two signal symbols independently through any of the transmit antennas. The two signal symbols are drawn from two different constellations of the same size with the first symbol drawn from any of the conventional modulation sets while the second is drawn from an optimally rotated version of the first constellation. The optimum rotation angle is obtained through extensive Monte Carlo simulations to minimize the bit error rate (BER) of the system. Simulation results show that for a given spectral efficiency, DQSM performsrelatively close to IQSM while requiring a smaller number of transmit antennas, and outperformsIQSM by up to 2 dB when the same number of antennas are used.

Goal-oriented multi-collision source algorithm for discrete ordinates transport calculation

  • Wang, Xinyu;Zhang, Bin;Chen, Yixue
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2625-2634
    • /
    • 2022
  • Discretization errors are extremely challenging conundrums of discrete ordinates calculations for radiation transport problems with void regions. In previous work, we have presented a multi-collision source method (MCS) to overcome discretization errors, but the efficiency needs to be improved. This paper proposes a goal-oriented algorithm for the MCS method to adaptively determine the partitioning of the geometry and dynamically change the angular quadrature in remaining iterations. The importance factor based on the adjoint transport calculation obtains the response function to get a problem-dependent, goal-oriented spatial decomposition. The difference in the scalar fluxes from one high-order quadrature set to a lower one provides the error estimation as a driving force behind the dynamic quadrature. The goal-oriented algorithm allows optimizing by using ray-tracing technology or high-order quadrature sets in the first few iterations and arranging the integration order of the remaining iterations from high to low. The algorithm has been implemented in the 3D transport code ARES and was tested on the Kobayashi benchmarks. The numerical results show a reduction in computation time on these problems for the same desired level of accuracy as compared to the standard ARES code, and it has clear advantages over the traditional MCS method in solving radiation transport problems with reflective boundary conditions.

An hp-angular adaptivity with the discrete ordinates method for Boltzmann transport equation

  • Ni Dai;Bin Zhang;Xinyu Wang;Daogang Lu;Yixue Chen
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.769-779
    • /
    • 2023
  • This paper describes an hp-angular adaptivity algorithm in the discrete ordinates method for Boltzmann transport applications with strong angular effects. This adaptivity uses discontinuous finite element quadrature sets with different degrees, which updates both angular mesh and the degree of the underlying discontinuous finite element basis functions, allowing different angular local refinement to be applied in space. The regular and goal-based error metrics are considered in this algorithm to locate some regions to be refined. A mapping algorithm derived by moment conservation is developed to pass the angular solution between spatial regions with different quadrature sets. The proposed method is applied to some test problems that demonstrate the ability of this hp-angular adaptivity to resolve complex fluxes with relatively few angular unknowns. Results illustrate that a reduction to approximately 1/50 in quadrature ordinates for a given accuracy compared with uniform angular discretization. This method therefore offers a highly efficient angular adaptivity for investigating difficult particle transport problems.

Design and Performance Analysis of the Efficient Equalization Method for OFDM system using QAM in multipath fading channel (다중경로 페이딩 채널에서 QAM을 사용하는 OFDM시스템의 효율적인 등화기법 설계 및 성능분석)

  • 남성식;백인기;조성호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6B
    • /
    • pp.1082-1091
    • /
    • 2000
  • In this paper, the efficient equalization method for OFDM(Orthogonal Frequency Division Multiflexing) System using the QAM(Quadrature Amplitude Modulation) in multipath fading channel is proposed in order to faster and more efficiently equalize the received signals that are sent over real channel. In generally, the one-tap linear equalizers have been used in the frequency-domain as the existing equalization method for OFDM system. In this technique, if characteristics of the channel are changed fast, the one-tap linear equalizers cannot compensate for the distortion due to time variant multipath channels. Therefore, in this paper, we use one-tap non-linear equalizers instead of using one-tap linear equalizers in the frequency-domain, and also use the linear equalizer in the time-domain to compensate the rapid performance reduction at the low SNR(Signal-to-Noise Ratio) that is the disadvantage of the non-linear equalizer. In the frequency-domain, when QAM signals, consisting of in-phase components and quadrature (out-phase) components, are sent over the complex channel, the only in-phase and quadrature components of signals distorted by the multipath fading are changed the same as signals distorted by the noise. So the cross components are canceled in the frequency-domain equalizer. The time-domain equalizer and the adaptive algorithm that has lower-error probability and fast convergence speed are applied to compensate for the error that is caused by canceling the cross components in the frequency-domain equalizer. In the time-domain, To compensate for the performance of frequency-domain equalizer the time-domain equalizes the distorted signals at a frame by using the Gold-code as a training sequence in the receiver after the Gold-codes are inserted into the guard signal in the transmitter. By using the proposed equalization method, we can achieve faster and more efficient equalization method that has the reduced computational complexity and improved performance.

  • PDF

A Study on the PR shaped SQAM error rate with carrier phase error (PR Shape된 SQAM의 오율에 반송파위상오차가 미치는 영향에 대한 연구)

  • 박용우;이형재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.9 no.1
    • /
    • pp.11-17
    • /
    • 1984
  • A study is presented showing the effect of carrier phase error on the error-rate of a (Class I, II, IV)PR shaped SQAM digital communication system. A simple upper bound on the probabilty of error as a function of phase error is derived and compared to one another. The results show that the three system can be used appropriately if carrier phase error is less than 3$^{\circ}$. However, if phase error is larger than 3, the PR class I is the best choice.

  • PDF

ERROR BOUNDS FOR GAUSS-RADAU AND GAUSS-LOBATTO RULES OF ANALYTIC FUNCTIONS

  • Ko, Kwan-Pyo
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.797-812
    • /
    • 1997
  • For analytic functions we give an expression for the kernel $K_n$ of the remainder terms for the Gauss-Radau and the Gauss-Lobatto rules with end points of multiplicity r and prove the convergence of the kernel we obtained. The error bound are obtained for the type $$\mid$R_n(f)$\mid$ \leq \frac{1}{\pi}l(\Gamma) max_{z \in \Gamma} $\mid$K_n(z)$\mid$ max_{z \in \Gamma} $\mid$f(z)$\mid$$, where $l(\Gamma)$ denotes the length of contour $\Gamma$.

  • PDF

Channel Distortion Effects on a BPSK DS/SS and a QPSK DS/SS Signal Demodulation (BPSK DS/SS외 QPSK DS.SS 신호 복호에서 채널 왜곡의 영향)

  • Park, Jin-Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.8
    • /
    • pp.867-873
    • /
    • 1988
  • The degradation due to channel distortion in a quadrature modulation system from the ideal constant values over the bandwidth of a direct sequence spread spectrum signal are considered. Through using series expansion for the channel gain and phase response, the degradation in the correlator output at the receiver is found as a function of the parameters involved , including phase error, delay error, linear gin variation, quadratic gain variation, and quadratic phase variation.

  • PDF

Optimum Convolutional Error Correction Codes for FQPSK-B Signals

  • Park, Hyung-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.611-617
    • /
    • 2004
  • The optimum convolutional error correction codes for recently standardized Feher-patented quadrature phase-shift keying (FQPSK-B) modulation are proposed. We utilize the continuous phase modulation characteristics of FQPSK-B signals for calculating the minimum Euclidean distance of convolutional coded FQPSK-B signal. It is shown that the Euclidean distance between two FQPSK-B signals is proportional to the Hamming distance between two binary data sequence. Utilizing this characteristic, we show that the convolutional codes with optimum free Hamming distance is the optimum convolutional codes for FQPSK-B signals.

Implementation of SSB/BPSK-DS/CDMA Baseband Modem (SSB/BPSK-DS/CDMA Baseband 모뎀 설계 및 구현)

  • 노시창;임명섭
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.5-8
    • /
    • 2001
  • SSB(Single Sideband) modulation scheme is high bandwidth efficient method in the mobile communication system compared with present DSB(Double Sideband) modulation scheme. Using the othogonality between inphase PN code and Hilbert transformed quadrature PN code, we propose phase estimation structure that enables coherent demodulation in the reverse link basestation receiver Several system characteristics, bit error rate and phase error variance, are simulated and compared with balanced QPSK DS/CDMA system. To verify system performance, SSB/BPSK-DS/CDMA test board is implemented using FPGA chips.

  • PDF