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ERROR BOUNDS FOR GAUSS-RADAU AND
GAUSS-LOBATTO RULES OF ANALYTIC FUNCTIC .S

KwaN Pyo Ko

ABSTRACT. For analytic functions we give an expression for the ker-
nel K, of the remainder terms for the Gauss—Radau and the Gauss—
Lobatto rules with end points of multiplicity r and prove the conver-
gence of the kernel we obtained. The error bound are obtained for
the type |Rn(f)| < 5-U(F) max,cr |Kn(2)| max;er | f(2)], where {(T)
denotes the length of contour T'.

1. Introduction

Gaussian quadrature formulae for special functions, especially ana-
lytic functions with Chebyshev weight functions, have been known for a
long time. In this paper we study the kernels and prove the convergence
and error bounds for the remainder terms of Gauss—Radau and Gauss—
Lobatto rules with end points of multiplicity r. It is well-known that
the remainder term of Gaussian quadrature can be expressed in terms
of contour integral representation. Gautschi and Varga [4] studied the
problem to determine where the kernel in the contour integral represen-
tation of the remainder precisely attains its maximum modulus along the
contours for the Jacobi weight functions. Martin and Stamp (7] derived
an explicit expression for kernel K,, by the method of Laurent series
expansion. They developed methods for computing the coefficients (in
terms of the moments) for the Laurent series of kernel K.

Let f be a single—valued analytic function in a domain D which con-
tains [—1,1] and I" be a closed contour in D swrrounding [—1,1]. Let
the nonnegative weight function w(z) be defined on the interval [—1,1],
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where the moments f_ll z*w(z) dz exist for k = 0,1,2,--. The Gauss-
Radau rule with weight function w and end point —1 of multiplicity r is
given by

1 r—1 n
Ay [ e =3 kSO 1)+ Y NS + R,
- p=0 v=1

where 7, are the zeros of the nth degree orthogonal polynomial 7, (- : w®)
with respect to the weight function wf(t) = (¢ + 1)"w(t) and \,, k, are
the interpolatory weights. It is known that the remainder RE(f) is zero
whenever f is a polynomial of degree < 2n+r—1, i.e., RE(f) = 0 for all
f € Ropyr—1. Similarly, the Gauss—Lobatto rule with weight function w
and end points —1 and 1 of multiplicity r is given by

1 r—1 n
| =3 k-1 + 3 M)
(1.2) ) p=0 v

r—1
+ ) (~1)Pu (1) + RE(f),
p=0

where 7, are the zeros of the nth degree orthogonal polynomial 7, (- : w’)
with respect to the weight function w” () = (¢ — 1)"w(t) and k,, A, g,
are the interpolatory weights and RZ(f) =0 for all f € Ropqor_1.

When f is an analytic function in a domain D containing [-1, 1] and
I is a contour in D surrounding [—1,1], the remainder term R?L(.) can
be represented as a contour integral

l >
(1.3 REH(f) = 5 [ KEH@) () a,
where the kernel K/*% is given by

1
4 KRL(,\ — pRL
(14 R = R ().
or
RL(, .
1.5 KRL(z: )= £n (z:w) zel.

( ) n R,L ’

wn (2t w)
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Here, wn (2 : w) is the polynomial in the form wf(z : w) = (z+ 1)1, (2 :
wR) for the Gauss-Radau rule, and wk(z : w) = (2% — 1) 7w, (2 : w¥) for
the Gauss-Lobatto rule, and pf»L(z : w) is defined by

1 R, Ly .
(1.6) pRL (2 w) = / wn () ar,

1 z—1t

Superscripts " R” and ”L” denote Radau and Lobatto rule, respectively.
For details, we refer to [5].

The approximation integration formulas of Gauss-Radau and Gauss-
Lobatto rules are of use in the following situations. When we know the
value f(£1) = 0, or any other known value, the Gauss-Radau formula
is useful for solving the ordinary differential equation y’ = f(z,y). And
the Gauss-Lobatto rule has been applied to the numerical solution of
linear differential equations and integral equations.

During the last ten years, an interest in Gauss-type quadrature rules
has been intensified, partly because of their potential use in quadrature
routines, but also, because of the fascinating mathematical problems
they pose. It is expected that such Gauss—type quadrature will be widely
used in many applications.

In Section 2 we give an expression for the kernels of Gauss-Radau
and Gauss-Lobatto rules. In Section 3 we prove the convergence of the
kernel K, we obtained. In Section 4 we obtain the error bounds for the
Gauss—Radau and Gauss—Lobatto rules on the circle and ellipse. Finally,
we give an example in Section 5.

2. Kernel Form

The Gauss-Radau rule with (nonnegative) weight function w and end
point —1 of multiplicity r is given by

[ s = Y kd @0 + Y s + R,
: 2,

v=1

where 7,’s are the zeros of the nth degree orthogonal polynomial (- :
w®) with respect to the weight function w?®(t) = (t + 1)"w(t) and ),
k, are the interpolatory weights.
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For a weight wf(t) = (t + 1)"w(t), t € [~1,1], consider a contour T
satisfying
t+1

<1 forall te[—l,l]}.

This set is equal to
'={zeC:|]z2+1|>2}.

Now if we assume that f is an analytic function in a simply connected
region D containing I, then we obtain the following theorem.

THEOREM 1. For z € I', we have the following expression for kernel
K7(2)

(2.2) Z(z+1k+r+1’ zeT
where (3 can be obtained recursively by
n—1
a;
(23) Btk =D (mfns; = Brin—g) +mbyy, k=0,1,2,....
j=0 "

PROOF. From the equation (1.6) we have

pR(z) = /1 i(tt)w(t) dt = /1 (4 1)t wR)w(t) dt

—1 R — 1 z—1

k
For any z€I' and t€[—1,1], the sum Ziioéft%k% is uniformly conver-
gent on [—1,1]. Hence we get

1 o k
pR(z) = [1 Z —;(%t_*—l;—zﬂ—(t + 1) (t - w®w(t) dt

=S z+1)k+1/ (t + 1)Fma(t : wRwh() dt

k=0

(] 1
= Z T 1)k+1 / (t + 1) (t - w®)wh(t) dt.

k=n 1
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The last equation is due to orthogonality.
Letting oy = f_ll(t + Dfm, (t - w?)wr(t) dt, we see from (1.5) that

oo

1 Qi
(24 K0 = OF ey 2 G e

Since the orthogonal polynomial 7, (z : w) has n simple zeros in {—1, 1),
and since 1/my,(z : wf) has the form 57 (Z—ﬁgrq which is valid for all
z € I', we have formally

1 o0
Kf“):(z+1yw(z wh) 2; z+1w+1

o0

. :
(2.5) :m(2(2+1k+1)(2(z+1k+1)

_Z z+1k+r+1’ zel.

Our aim is to find how to calculate the Bx. The nth degree orthogonal
polynomial 7, (t : wF) is of the form m, (¢ : w?) = 377 a;(t + 1)7 and
from the definition of ay, it follows that

1
ak=/ (t+ 1) Zajt—l-l wh(t) dt

n .1
:Z/%mnwwmﬁ
=071

Therefore, we have
(2.6) ag = Zajml}if-j,

where mft = f_l_l(t + D*wR(t)dt. On the other hand, from (2.5), we
have

oo [&0)

— (037
(z+ 1) ma(z s wh Z (z+1 k+r+1:kL(z+1)k+l'
aril =0
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Since the Taylor expansion of the nth degree orthogonal polynomial at
z = —1is in the form m,(z : w®) = 3°7_;a;(z + 1)7, we see that

D) |3 e = e
= P (z+1) Pt (z+1)

Hence by comparing the coefficients of the above equation we obtain

n
(2.7) ak:ZBk+jaj» k=n,n+1 ...
§=0
and by using the fact that g =a; = =a,_1 =0, we find By = 51 =

-++ = B2y—1 = 0. From the above results (2.6) and (2.7), we see that
n n

(2.8) ZﬂHnHaj = ZajmkR+n+j, k=0,1,2,....
j=0 5=0

This is in the form

n—1

Bontkln + E Br+n+7a;
i=0
n-1

— § : vy R
= AiMi Ly T Moy k-
Jj=0

So we obtain i recursively by

n—1

a.
3¢ R R _
Bontk = Z Zz_( kntj — Brtnts) + Mo 1k, k=0,1,2,...
j=0 "

where mft = f_ll(t + )*w®(t)dt and a}s are obtained from the fact
() (_1:pR
™ (.ll.w ) 1

a; = F;
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We have a closed form of mkR for various common measures. For
example for Jacobi weight i.e., w(t) = (1 — ¢)*(1 +t)?, we have

1

mh :/ (1= O)%(1 + t)*+7+8 gy

-1

_ gktrtatpr1 LE+ 7+ 0+ DI a +1)
Thk+r+a+3+2)

We have seen that the Gauss-Lobatto rule with the (nonnegative)
weight function w and end points -1 and 1 of multiplicity = is given by

1 r—1 1
/ ROMOLTED SENCICIES SEWIcH
(2.9) p=0 vt

r—1
+ Y (=1)Pu, (1) + RE(f),
p=0

where 7,’s are the zeros of the nth degree orthogonal polynomial (- :
w’) with respect to the weight function w’(t) = (t2 — 1)"w(t) and kp,
Av, p are the interpolatory weights.

For a weight w” (t) = (t2—1)"w(t),t € [~1,1], consider the same contour
[' (2.1) and if we assume that f is an analytic function in a simply
connected region D containing I', then we get the following theorem.

THEOREM 2. For z € T', we have the following expression for kernel
K (2)

_ 1 = Bk
(2.10) KL(z)= T g;n Grnpe fET

where 3;; can be obtained recursively by

n—1

@
(2.11) Bonyk = Z ai(m1€+n+j ~ Brtnti) F Minpp, k=0,1,2,....
j=0 "
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PRrROOF. From the definition of (1.6), we have

p{;(z)=/ w(t) dt = / (t2_1z”“t ") t) de.

-t

For any z € I" and ¢t € [-1, 1], we have

m /_ (D (s byt 1) de

[M]8

pr(2) =

L
Il

0

1

I I

>
Il

The last equation comes from the orthogonality.
Letting ax = f_ll(t + 1)km, (t - wP)wk(t) dt, we see that

(2.12) KE(z i

k=0

z+1 k+1”

Since 1/, (2 : w”) has Laurent series in the form 3 4o, (Z—Jr"llgm which
is valid for all z € I, we have formally

1
Kn(2) = (22 = 1)mp(z : wh) Z_: (z + 1)k+1

(2.13) _1)7' (Z (z+1 k+1> (L z+ 1 k+1)

zel.

(z — l)r Z (z + 1)’““’“’

By the same process of Gauss-Radau rule, i.e., by the fact that the
Taylor expansion of the m,(z : wh) at 2 = —1 is in the form 7, (z :
wh) = E?:o a;(z + 1)7, we get from the definition of ay

(2.14) ak = Zajmﬁﬂ,
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7 (—1ewE .
where mE = f_ll(t + D*wl(t)dt, and o; = —’-1]——(]—,11”—) We obtain by

comparing the coefficients of (2.13)

(2.15) Qg =Zﬁk+jaj, k=nn+1,....
3=0
Sinceap =1 =+ - =ap_1 =0, wefind By =3 = = Bon-1 = 0.

On the other hand, from the above results (2.14) and (2.15), it follows
that

n

n
(2.16) D Brintja; = aymE ., =0,1,2,....
=0 i=o

So, we obtain g recursively by

n—1
as
,62n+k = Z a_J(mﬁ'f'n"‘j _/Bk+n+j) +m£n+kv k =O,1,2,...
5=0 """
where ml = f_ll(t + D)kwl(t) dt. O

3. Convergence of Kernel

In the previous section we represent the kernels of remainder term for
Gauss-Radau and Gauss-Lobatto rules as an infinite series containing
Br- Now we consider the convergence of kernel K,. The coefficients O
which we obtained in the previous chapters are not bounded, but we will
shortly show that it is not important. The purpose of this section is to
show the convergence of kernel K,, which we obtained from Theorem 1
and Theorem 2.

THEOREM 3. For z € T, the kernel KE(z) in Theorem 1 converges
absolutely.
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PrRoOOF. By Theorem 1, we have the following expression for kernel
K(z)

R\ _ o Bk
(31) Kn (Z) = Z W, zeT.
k=0
On the other hand, since K2(z) = RF((z —-)~1), we have for =<1
o0
RE((t+ D)%)
R _ n
(3.2) K;u)_Z;7?IﬂmTﬂ zel.

Therefore, we represent (3 in the following form

RE((t + 1)¥)

—nA\ L
(3.3) Br = CES zel.
Consequently, we have
(3.4)
Bk RE((t+ 1)) ! RE(t+ 1)
(Z-I— 1)k+7‘+1 - (z + 1)T(Z+ 1)k+'r‘+l - ’Z + 1|2r+1 (Z+ l)k
k
t+1
< R -
—C”Rn ”00 Z+1 ’

where C is a constant and we used the fact that the remainder term RE
is continuous linear functional on (C[—1,1], || - ||co)- O

4. Error Bound

We have the remainder term of Gauss—Radau rule with end point —1
of multiplicity r

RE(f) = / Ft)w(t) dt—§ A f(T) Zk F(—
(4.1) iyt

/KR (2)f(2) dz.

27rz
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From the Theorem 1, we have

(4.2) i _ & .

~ 27Tz r (z + Dkt

When f is an analytic function in I', we have by the Cauchy integral
formula

B oo f(k+r)(_1)

where i is computed using equation (2.3). The above representation
(4.3) for RE(f) is of little practical value since the derivatives f*) are
usually too difficult to obtain. So we obtain the error bound from (4.2)
in the final form

1
w8 R < Y 10 max () m i

k=2n

Now, we will get the error bound (4.4) for the case where I is a circle
and an ellipse which satisfies the condition (2.1).

Case 1: Circle

If the contour I is a circle in the form Cr = {z € C: |2+1| = R,R >

2}, we have
1 1

max = .
26Ch lz + 1|k+r+1 Rk+1‘+1

Since I(Cr) = 27 R, we get the error bound on a circle

(45) REDIS 3 180 max ()

k=2n

Case 2: Ellipse
In case where the contour is an ellipse of the form A = {z € C:
z+1=1(pe'® +p~le=¥), 0<6<2r, p > 2+/5}, we get

1 1
rznea/ic |z + 1]ktr+l [%(p — p L)kt
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Since the ellipse A has length I(A) = 4¢71E(e), where € = -

the eccentricity of A and E(e fo V1 — €2 sin? édﬁ, we get the error
bound on an ellipse

is

1

46)  |RE(S) |<i§:vnkf1Ek) — oy 2l )L

k=2n [%(

Similarly we have the remainder term of Gauss-Lobatto rule with end
points —1 and 1 of multiplicity r

=L/Mwmw

_ f(z)
Z Pregm 27 / (z = 1) (z + 1)ktr+1 dz.

So we obtain the error bound of the form

(4.7)

1
Pz —- 1]z + 1[FFr+D

(48) [RE(NI< Z |6k|—— max| f(z)| max
k=2n

We will get the error bound (4.8) for the case where I is a circle or an

ellipse.

Case 1: Circle
If the contour is a circle of the form Cp = {z € C: |z+1| = R, R > 2},

we have the error bound on the circle
oo

(4.9) Ry (A< D 18| max | (2 )I

k=2n

1
Q\rRk+r

1 1 _
the fact max,cc,, e=1F MaXzeCp FiIFETeT =

Case 2: Ellipse
In case where the contour is an ellipse of the form A = {z € C :
z+1= %(pe’"9 +p7le7®), 0<0<2r, p>2+ V/5}, we get
- 2
[Be(DI< Y 1Bkl 2 E(e)
(4.10) ke=2n |

Bl i o2 me

1
(R—2)" RF 1771
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where € = —%—; is the eccentrl(:lty of Aand E(e fo V31— 62 sin? 6 d#,

p+p
by using max,cp Iz—llrlz-#ll‘“““ < max,er Iz—llT max,er lz+1| T -

5. Example

All the computations were performed in double precision on the HP
715 computer (machine precision approximately 15 decimal digits). We
apply the results of section 3 to obtain the error estimates for Gauss-
Radau and Gauss-Lobatto rules on the circle and the ellipse.

ExXAMPLE. For the given

1
cosfa(t +1)] /1 —t
5.1 Ny dt, >0
5.1) 1 VB Et 1+t ¢

we consider w(t) = ,/ i—;—ﬁ as the Jacobi weight with parameters a =

-8 = % Accordingly,

cosla(z + 1))

V5+z

the square root being understood in the sense of the principal value.
To bound f on the circle Cp = {z € C: |z + 1| = R, R > 2}, note
that

f(z) =

1 : ) . .
Icos[a(z + ]_)” .2_. 'e—aRsm 0giaRcos + e /sin Be—zaRcosGI

S %( —aRsin@ +eaRsin6)’ s e CR

and
V5+2l>a-]z+1], z€Ck.
We obtain
h(aR

(5.2) )] < ©SReB e

4—-R
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Thus we have following error bound on the circle. First, for Gauss-Radau
rule the inequality (4.5) yields on the circle

R = cosh(aR) 1
(53) an(f)|§k§n|ﬂk| TR

where (i is computed by (2.3). For Gauss-Lobatto rule we have from
(4.9)

= cosh(aR) 1
(5.4) Bz (I < I;ﬂ 8- By

where (3 is computed using (2.11).

Table 1 (Radau on the circle)

n a bound R True error
5 1  2533(-7) 3812 -4.808(-9)
2 1.098(-5)  3.716 -2.520(-6)

4  1.439(-2) 3119  8.221(-4)

10 1 3.296(-12) 3.006  6.662(-16)
2 1.622(-10) 3.886  5.413(-13)

4  3.586(-7) 3.801 -3.795(-12)

Table 2 (Lobatto on the circle)

n a bound R True error
5 1 3.798(8) 3.864 3.613(-11)
2 L771(-6) 3818  -2.310( -7)

4 3.036(-3) 3.579  -2.304( -4)

10 1 2.446(-15) 3.922 -1.110(-15)
2 1.226(-13)  3.907 5.398(-13)

4 2.909(-10) 3.858  2.184(-12)
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Using an elliptic contour A = {z € C: z+1 = 1 (pe®+p~le~) <
0 <2m, p>2++/5}, we have in place of (5.2)

(5.5) 17 (2)| <

Thus we have following error bound on the ellipse. The inequality (4.6)
yields the error bound for Gauss-Radau rule in the form

A o0 2 1 cosh[za(p — p~1)]
(56) an (f)l Skgnlﬂklﬂ'e E(E) [% (p . p—l)]k+r—f—1 \;4_“6——1 ’

where € = ;ﬁ)—_l is the eccentricity of A and E(€) = fO% V1 — €2sin% 0 do
and Sy is computed using equation (2.3). For Gauss-Lobatto rule we have

from (4.10) the error bound

cosh[Za(p — p1)]

vz

REDIS S 106l 2 (o)
(57) k=2n
X

1
[3(o = p R[4 (o + p71) — 2]

Our results are shown in Table 1-2. We have expressed the error
bound as a function of p or/and R. Numbers in parentheses of the Table
1-2 indicate decimal exponents. For simplicity we had the error bound
for multiplicity two. We sum the five terms of infinite series which is
the right hand side of 5.3-4. In the last column we give the true error
using the package. We have several interesting features. As a decreases
and n increases, the number R approaches to R = 4 and p approaches
to p = 4 +/15. This is because of the nature of weak singularity of the
denominator factor. On the other hand, for increasing a, we have bad
error bound. We can easily guess this phenomenon before we calculate
the error bound. Because for a large value of a, error bound (4.3) grows
like exponential function a*.
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