• Title/Summary/Keyword: Quadratic extrapolation and quadratic

Search Result 13, Processing Time 0.028 seconds

Monte Carlo burnup and its uncertainty propagation analyses for VERA depletion benchmarks by McCARD

  • Park, Ho Jin;Lee, Dong Hyuk;Jeon, Byoung Kyu;Shim, Hyung Jin
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1043-1050
    • /
    • 2018
  • For an efficient Monte Carlo (MC) burnup analysis, an accurate high-order depletion scheme to consider the nonlinear flux variation in a coarse burnup-step interval is crucial accompanied with an accurate depletion equation solver. In a Seoul National University MC code, McCARD, the high-order depletion schemes of the quadratic depletion method (QDM) and the linear extrapolation/quadratic interpolation (LEQI) method and a depletion equation solver by the Chebyshev rational approximation method (CRAM) have been newly implemented in addition to the existing constant extrapolation/backward extrapolation (CEBE) method using the matrix exponential method (MEM) solver with substeps. In this paper, the quadratic extrapolation/quadratic interpolation (QEQI) method is proposed as a new high-order depletion scheme. In order to examine the effectiveness of the newly-implemented depletion modules in McCARD, four problems in the VERA depletion benchmarks are solved by CEBE/MEM, CEBE/CRAM, LEQI/MEM, QEQI/MEM, and QDM for gadolinium isotopes. From the comparisons, it is shown that the QEQI/MEM predicts ${k_{inf}}^{\prime}s$ most accurately among the test cases. In addition, statistical uncertainty propagation analyses for a VERA pin cell problem are conducted by the sensitivity and uncertainty and the stochastic sampling methods.

Object Based Image Compression Using QP (Quadratic Programming) Method (QP(Quadratic Programming) 방법을 이용한 객체단위의 영상압축 알고리즘)

  • 최유태;이상엽;곽대호;김시내;송문호
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.175-178
    • /
    • 2000
  • The object level image compression is a useful technology for reducing the necessary data and manipulating individual objects. In this paper, we propose a new image object compression algorithm that uses the quadratic programming (QP) method to reduce the compressed data. The results indicate the superiority of the proposed QP based algorithm over the low pass extrapolation (LPE) method of MPEG-4.

  • PDF

Nonlinear spectral collocation analysis of imperfect functionally graded plates under end-shortening

  • Ghannadpour, S. Amir M.;Kiani, Payam
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.557-568
    • /
    • 2018
  • An investigation is made in the present work on the post-buckling and geometrically nonlinear behaviors of moderately thick perfect and imperfect rectangular plates made-up of functionally graded materials. Spectral collocation approach based on Legendre basis functions is developed to analyze the functionally graded plates while they are subjected to end-shortening strain. The material properties in this study are varied through the thickness according to the simple power law distribution. The fundamental equations for moderately thick rectangular plates are derived using first order shear deformation plate theory and taking into account both geometric nonlinearity and initial geometric imperfections. In the current study, the domain of interest is discretized with Legendre-Gauss-Lobatto nodes. The equilibrium equations will be obtained by discretizing the Von-Karman's equilibrium equations and also boundary conditions with finite Legendre basis functions that are substituted into the displacement fields. Due to effect of geometric nonlinearity, the final set of equilibrium equations is nonlinear and therefore the quadratic extrapolation technique is used to solve them. Since the number of equations in this approach will always be more than the number of unknown coefficients, the least squares technique will be used. Finally, the effects of boundary conditions, initial geometric imperfection and material properties are investigated and discussed to demonstrate the validity and capability of proposed method.

Efficient methods for integrating weight function: a comparative analysis

  • Dubey, Gaurav;Kumar, Shailendra
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.885-900
    • /
    • 2015
  • This paper introduces Romberg-Richardson's method as one of the numerical integration tools for computation of stress intensity factor in a pre-cracked specimen subjected to a complex stress field across the crack faces. Also, the computation of stress intensity factor for various stress fields using existing three methods: average stress over interval method, piecewise linear stress method, piecewise quadratic method are modified by using Richardson extrapolation method. The direct integration method is used as reference for constant and linear stress distribution across the crack faces while Gauss-Chebyshev method is used as reference for nonlinear distribution of stress across the crack faces in order to obtain the stress intensity factor. It is found that modified methods (average stress over intervals-Richardson method, piecewise linear stress-Richardson method, piecewise quadratic-Richardson method) yield more accurate results after a few numbers of iterations than those obtained using these methods in their original form. Romberg-Richardson's method is proven to be more efficient and accurate than Gauss-Chebyshev method for complex stress field.

Development of an Efficient Line Search Method by Using the Sequential Polynomial Approximation (순차적 다항식 근사화를 적용한 효율적 선탐색기법의 개발)

  • 김민수;최동훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.433-442
    • /
    • 1995
  • For the line search of a multi-variable optimization, an efficient algorithm is presented. The algorithm sequentially employs several polynomial approximations such as 2-point quadratic interpolation, 3-point cubic interpolation/extrapolation and 4-point cubic interpolation/extrapolation. The order of polynomial function is automatically increased for improving the accuracy of approximation. The method of approximation (interpolation or extrapolation) is automatically switched by checking the slope information of the sample points. Also, for selecting the initial step length along the descent vector, a new approach is presented. The performance of the proposed method is examined by solving typical test problems such as mathematical problems, mechanical design problems and dynamic response problems.

Robust Extrapolation Design Criteria under the Uncertainty of Model and Error Structure (모형과 오차구조의 불확실성하에서의 강건 외삽 실험설계)

  • Jang, Dae-Heung;Kim, Youngil
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.3
    • /
    • pp.561-571
    • /
    • 2015
  • When we consider an optimal design to predict the response corresponding to the point outside the design region, we are extremely careful about choosing the design criteria for selecting the support points. The assumed model and its accompanying error structure should be assumed to extend beyond the design region for the selected design criteria to be valid. Thus, we modify the existing design criteria such as extrapolation-optimality to be suited to those situations. We propose some maximin approaches in this paper. Simple and quadratic regression models are tested to find the basic characteristics of such maximin approaches. Some main findings are discussed in the conclusion.

Stress concentration factors test of reinforced concrete-filled tubular Y-joints under in-plane bending

  • Yang, Jun-fen;Yang, Chao;Su, Ming-zhou;Lian, Ming
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.203-216
    • /
    • 2016
  • To study the stress concentration factors (SCFs) of concrete-filled tubular Y-joints subject to in-plane bending, experiments were used to investigate the hot spot stress distribution along the intersection between chord and brace. Three concrete-filled tubular chords forming Y-joints were tested with different reinforcing components, including doubler-plate, sleeve, and haunch-plate reinforcement. In addition, an unreinforced joint was also tested for comparison. Test results indicate that the three different forms of reinforcement effectively reduce the peak SCFs compared with the unreinforced joint. The current research suggests that the linear extrapolation method can be used for chords, whereas the quadratic extrapolation method must be used for braces. The SCF is effectively reduced and more evenly distributed when the value of the axial compression ratio in the chord is increased. Furthermore, the SCFs obtained from the test results were compared to predictions from some well-established SCF equations. Generally, the predictions from those equations are very consistent for braces, but very conservative for concrete-filled chords.

Development of the Fuzzy-Based System for Stress Intensity Factor Analysis

  • Lee, Joon--Seong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.255-260
    • /
    • 2002
  • This paper describes a fuzzy-based system for analyzing the stress intensity factors (SIFs) of three-dimensional (3D) cracks. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-coded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The singular elements such that the mid-point nodes near crack front are shifted at the quarter-points, and these are automatically placed along the 3D crack front. The complete finite element(FE) model is generated, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. To demonstrate practical performances of the present system, semi-elliptical surface cracks in a inhomogeneous plate subjected to uniform tension are solved.

A $C^2$ SURFACE EXTENSION METHOD USING SEVERAL CONTROL FUNCTIONS

  • Kim, Hoi-Sub;Ko, Kwan-Pyo;Yoon, Gang-Joon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.7 no.2
    • /
    • pp.1-11
    • /
    • 2003
  • We suggest a method of $C^2$ surface extension with the aid of well-controlled functions. The extended surface is $C^2$ continuous along the old boundary. The function of the extension surface is obtained by replacing the monomials in the quadratic Taylor polynomial of the given surface-representing function by other functions subject to some boundary conditions. We present several sets of control functions. In order to illustrate our suggestion, it is shown that surfaces with a circular boundary and a square boundary can be extended using several base functions.

  • PDF

Analysis of Uncertainty of Rainfall Frequency Analysis Including Extreme Rainfall Events (극치강우사상을 포함한 강우빈도분석의 불확실성 분석)

  • Kim, Sang-Ug;Lee, Kil-Seong;Park, Young-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.4
    • /
    • pp.337-351
    • /
    • 2010
  • There is a growing dissatisfaction with use of conventional statistical methods for the prediction of extreme events. Conventional methodology for modeling extreme event consists of adopting an asymptotic model to describe stochastic variation. However asymptotically motivated models remain the centerpiece of our modeling strategy, since without such an asymptotic basis, models have no rational for extrapolation beyond the level of observed data. Also, this asymptotic models ignored or overestimate the uncertainty and finally decrease the reliability of uncertainty. Therefore this article provide the research example of the extreme rainfall event and the methodology to reduce the uncertainty. In this study, the Bayesian MCMC (Bayesian Markov Chain Monte Carlo) and the MLE (Maximum Likelihood Estimation) methods using a quadratic approximation are applied to perform the at-site rainfall frequency analysis. Especially, the GEV distribution and Gumbel distribution which frequently used distribution in the fields of rainfall frequency distribution are used and compared. Also, the results of two distribution are analyzed and compared in the aspect of uncertainty.