Browse > Article
http://dx.doi.org/10.12989/sem.2015.55.4.885

Efficient methods for integrating weight function: a comparative analysis  

Dubey, Gaurav (Department of Mechanical Engineering, Institute of Technology, Guru Ghasidas Vishwavidyalaya)
Kumar, Shailendra (Department of Civil Engineering, Institute of Technology, Guru Ghasidas Vishwavidyalaya)
Publication Information
Structural Engineering and Mechanics / v.55, no.4, 2015 , pp. 885-900 More about this Journal
Abstract
This paper introduces Romberg-Richardson's method as one of the numerical integration tools for computation of stress intensity factor in a pre-cracked specimen subjected to a complex stress field across the crack faces. Also, the computation of stress intensity factor for various stress fields using existing three methods: average stress over interval method, piecewise linear stress method, piecewise quadratic method are modified by using Richardson extrapolation method. The direct integration method is used as reference for constant and linear stress distribution across the crack faces while Gauss-Chebyshev method is used as reference for nonlinear distribution of stress across the crack faces in order to obtain the stress intensity factor. It is found that modified methods (average stress over intervals-Richardson method, piecewise linear stress-Richardson method, piecewise quadratic-Richardson method) yield more accurate results after a few numbers of iterations than those obtained using these methods in their original form. Romberg-Richardson's method is proven to be more efficient and accurate than Gauss-Chebyshev method for complex stress field.
Keywords
pre-cracked specimen; stress intensity factor; weight function; mode-I loading; numerical integration;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Aaghaakouchak, A.A., Dharmavasan, S. and Glinka, G. (1990), "Stress intensity factors for cracks in structures under different boundary conditions", Eng. Fract. Mech., 37(5), 1125-1137.   DOI
2 Anderson, T.L. and Glinka, G. (2006), "A closed-form method for integrating weight functions for partthrough cracks subject to Mode I loading", Eng. Fract. Mech., 73, 2153-216.   DOI
3 Bueckner, H.F. (1970), "A novel principle for the computation of stress intensity factors", Zeitschrift fur angewandte Mathematik und Mechanik, 50(9), 529-546.
4 Das, S., Prasad, R. and Mukhopadhyay, S. (2011), "Stress intensity factor of an edge crack in composite media", Int. J. Fract., 172, 201-207.   DOI
5 Drucker, D.C. and Rice, J.R. (1970), "Plastic deformation in brittle and ductile fracture", Eng. Fract. Mech., 1(4), 577-602.   DOI
6 Ferahi, M. and Meguid, S.A. (1998), "A novel approach for evaluating weight functions for cracks in finite bodies", Eng. Fract. Mech., 59(3), 343-352.   DOI
7 Fett, T. (2001), "Stress intensity factors and T-stress for internally cracked circular disks under various boundary conditions", Eng. Fract. Mech., 68, 1119-1136.   DOI
8 Fett, T. and Bahr, H.A. (1999), "Mode I stress intensity factors and weight functions for short plates under different boundary conditions", Eng. Fract. Mech., 62, 593-606.   DOI
9 Fett, T., Pham, V.B. and Bahr, H.A. (2004), "Weight functions for kinked semi-infinite cracks", Eng. Fract. Mech., 71, 1987-1995.   DOI
10 Ghajar, R. and Googarchin, H.S. (2012), "General point load weight function for semi-elliptical crack in finite thickness plates", Eng. Fract. Mech., 109, 33-44.
11 Glinka, G. and Shen, G. (1991), "Universal features of weight functions for cracks in modeI", Eng. Fract. Mech., 40(6), 1135-1146.   DOI
12 Jankowiak, A., Jakubczak, H. and Glinka, G. (2009), "Fatigue crack growth analysis using 2-D weight function", Int. J. Fatigue, 31, 1921-1927.   DOI
13 Jones, I.S. and Rothwell, G. (2001), "Reference stress intensity factors with application to weight functions for internal circumferential cracks in cylinder", Eng. Fract. Mech., 68, 434-454.
14 Kim, J.H., Hong, S.G. and Lee, S.B. (2003), "Evaluation of stress intensity factor for a partially patched crack using an approximate weight function", KSME Int. J., 17(11), 1659-1664.   DOI
15 Lee, H.Y. and Hong, C.S. (1996), "A new weight function approach using indirect boundary integral method", Eng. Fract. Mech., 53(6), 957-974.   DOI
16 Li, C., Weng, G.J., Duan, Z. and Zou, Z. (2001), "Dynamic stress intensity factor of a functionally graded material under antiplane shear loading", Acta Mechanica, 149, 1-10.   DOI
17 Lira-vergara, E. and Rubio-gonzalez, C. (2005), "Dynamic stress intensity factor of interfacial finite cracks in orthotropic materials", Int. J. Fract., 135, 285-309.   DOI
18 Mattoni, M.A. and Zok, F.W. (2003), "A method for determining the stress intensity factor of a single edgenotched tensile specimen", Int. J. Fract., 119, L3-L8.   DOI
19 Nabavi, S.M. and Ghajar, R. (2001), "Analysis of thermal stress intensity factors for cracked cylinders using weight function method", Int. J. Eng. Sci., 48, 1811-1823.
20 Ng, S.W. and Lau, K.J. (1999), "A new weight function expression for through cracks", Eng. Fract. Mech., 64, 515-537.   DOI
21 Niu, X. and Glinka, G. (1990), "Weight functions for edge and surface semi-elliptical cracks in flat plates and plates with corners", Eng. Fract. Mech., 36(3), 459-475.   DOI
22 Rice, J.R. (1968a), "The elastic-plastic mechanics of crack extension", Int. J. Fract. Mech., 4, 41-49.
23 Niu, X. and Glinka, G. (1987), "On the "limitations of the Petroski-Achenbach crack opening displacement approximation for the calculation of weight function-do they really exist?", Eng. Fract. Mech., 26(5), 701-706.   DOI
24 Pastrama, S.D. and Castro, P.M.S.T. (1998), "Weight functions from finite element displacements", Int. J. Press. Ves. Pip., 75, 229-236.   DOI
25 Petroski, H.Y. and Achenbach, F.D. (1978), "Computation of the weight function from a stress intensity factor", Eng. Fract. Mech., 10, 257-266.   DOI
26 Rice, J.R. (1972), "Some remarks on elastic crack-tip stress field", Int. J. Solid. Struct., 8, 751-758.   DOI
27 Rice, J.R. (1968b), "A path independent integral and the approximate analysis of strain concentration by notches and cracks", J. Appl. Mech., 35, 379-386.   DOI
28 Rice, J.R. and Rosengren, G.F. (1968), "Plane strain deformation near a crack tip in a power law hardening material", J. Mech. Phys. Solid., 16, 1-12.   DOI
29 Rice, J.R. (1974), "Limitations to the small-scale yielding approximation for crack tip plasticity", J. Mech. Phys. Solid., 22, 17-26.   DOI
30 Richardson, L.F. (1911), "The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam", Phil. Tran. Roy. Soc. Londondon A, 210, 307-357.   DOI
31 Rubio-gonzalez, C. and Mason, J.J. (2001), "Green's functions for the stress intensity factor evolution in finite cracks in orthotropic materials", Int. J. Fract., 108, 317-336.   DOI
32 Shen, G. and Glinka, G. (1991), "Determination of weight functions from reference stress intensity factors", Theor. Appl. Fract. Mech., 15(2), 237-245.   DOI
33 Sha G.T. and Yang C.T. (1986), "Weight functions of radial cracks emanating from a circular hole in a plate", Fract. Mech., Seventh Volume, Eds. J.H. Underwood et al., ASTM STP, 905, 573-600.
34 Shahani, A.R. and Nabavi, S.M. (2006), "Closed form stress intensity factors for a semi-elliptical crack in a thick-walled cylinder under thermal stress", Int. J. Fatigue, 28, 926-933.   DOI
35 Shen, G., Plumtree, A. and Glinka, G. (1991), "Weight function for the surface point of semi-elliptical surface crack in a finite thickness plate", Eng. Fract. Mech., 40(1), 167-176.   DOI
36 Tada, H., Paris, P.C. and Irwin, G. (2000), The Stress Analysis of Cracks Handbook, Paris Production Incorporated, St. Louis, Missouri.
37 Yang, W.Y., Cao, W., Chung, T.S. and Morris J. (2005), Applied numerical methods using MATLAB, John Wiley & Sons, Inc., Hoboken, New Jersey.
38 Zheng, X.J., Glinka, G. and Dubey, R.N. (1995), "Calculation of stress intensity factors for semielliptical cracks in a thick-wall cylinder", lnt. J. Press. Ves. Pip., 62, 249-258.   DOI