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A C? SURFACE EXTENSION METHOD USING SEVERAL
CONTROL FUNCTIONS

HOI SUB KIM, KWAN PYO KO, AND GANG JOON YOON*

. ABSTRACT. We suggest a method of C? surface extension with the aid of well-
controlled functions. The extended surface is C? continuous along the old boundary.
The function of the extension surface is obtained by replacing the monomials in the
quadratic Taylor polynomial of the given surface-representing function by other func-
tions subject to some boundary conditions. We present several sets of control func-
tions. In order to illustrate our suggestion, it is shown that surfaces with a circular
boundary and a square boundary can be extended using several base functions.

1. INTRODUCTION

In manufacturing or modeling of a surface, it is sometimes helpful or necessary to
extend an existing surface across its boundary. A surface may be given explicitly by a
function which can be defined on the whole plane, and there are many ways to extend or
extrapolate the underlying surface depending on one’s need and situation. The simplest
way to extend the surface is to use the same function for a larger domain, but surface-
representing functions may fluctuate more widely for larger values of variables and it
becomes unacceptable for some purposes. So we are in need of other extrapolation
method with some constraints. Extrapolation theory is not well developed because it is
not unique outside the considered domain, while interpolation theory is well developed
in curve and surface. For more details, we refer to [2, 3, 5].

From the viewpoint of practical application, one requires a smooth extension for
machining in NC(numerical control) machine. In the past, we generated data outside
the useful area and refitted those data using least squares method. However, this
method has some drawbacks which have some errors within the useful area and require
much computational time in the case of a surface using B-spline basis. So we need a
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surface having this property for machining. We keep the area and extend the useless
area by a function which is smooth across the boundary.

In engineering design or modeling of parts, the required curve or surface usually has
geometric shape and there is no universal solution for the extension problem. It is
therefore practically a case-by-case problem and there there are some works in various
directions (see [1], [4], and [6]).

In this work, we modify quadratic Taylor’s formulas to give a suggestion of C?
surface extension. Taylor’s theorem provides “higher-order” applications to a func-
tion generalizing the line and the quadratic approximation based on the first and the
second derivative of the function, respectively. Also one uses Taylor’s theorem in sev-
eral variables to derive tests for different type of extrema. There are other important
applications of this theorem as well. Quadratic Taylor’s formula gives a polynomial
approximation of degree two called the Taylor polynomial. And we can use the poly-
nomial approximation to extend the surface. Since the values of a polynomial become
larger as the values of variables increase, it is somehow unsuitable for our purpose. So
we replace monomials in the Taylor polynomials by some other functions called control
functions which satisfy some conditions as in (2.2). It is our main idea and gives a
method for C? surface extension (see, Theorem 2.2). In section 2, we suggest several
sets of control functions and we illustrate our suggestion using the control functions in
section 3.

2. A SURFACE EXTENSION METHOD

Taylor’s theorem provides “higher-order” applications to a function generalizing the
line approximation based on the first derivative of the function. Also Taylor’s theorem
is used in several variables to derive a test for different type of extrema. There are
other important applications of this theorem as well.

Theorem 2.1. (Taylor’s Formula for f(z,y) at (a,b).) Let D be a convez region
D C R? containing a point (a,b) as an interior point and let f be a real valued function
defined on D. If f has n-th derivative, then throughout D, we have

F(o ) =F(@,b) + (@ — a) 2 4 (y — b)aa—y>f|(a,b)

oz
1 0 0 ne
(2.1) +"'+(—n_—1)!(($—a)%+(y—b)5§) 'flian)
1 0 0
+ ﬁ((m - a)% + (y - b)a_y)nfl(za,yb)

for some point (x4,yp) lying on the line segment joining (a,b) and (z,y).

We call the polynomial in the right-hand side of the equation (2.1) except the last
term Taylor polynomial of f. Throughout this work, if f is a function of two variable
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z and y, we denote the partial derivatives of f at (a,b) alternatively by

0 0
) = flad) ad Z@) = flab)
and we use the following notation
0? 9?
Joz = (fx)x = a_a:];, facy (fw) af and fyy = (fy)y = a_y];

We may regard Taylor polynomial of f at (a,b) as the expansion :
f(x,y) :f(a'7b) +fm(0,,b)A(£L' —a,y — b) + fy( ) (iE —a,y— b)
+ fzz(a,0)C(z — a,y — b) + foy(a,b)D(z — a,y — b) + fyy(a,b)E(x —a,y — b)
+ R(z,y)
where R(z,y) is the remainder and the functions A, B, C, D, and FE have the property

' A(0,0) = B(0,0) = C(0,0) = D(0.0) = E(0,0) = 0
24(0,0)=1 and %B(0,0) = §9(0,0) = 22(0,0) = 2£(0,0) =0
22) "’5/(0 ,00=1 and 537( ,0) = 42(0,0) = %(0,0):%%(0;0)20
) 2£90,00=1 and 24 54(00) = 2( 0) = 22(0,0) = ££(0,0) = 0
gzgy(o 0)=1 and 2£(0,0)= g;g( ,0) = 2£6.(0,0) = ££(0,0) =0
| 270,00=1 and 3 ( 0) = Z2(0, 0)=ﬁ€(0,0) 20(0,0) =0

As shall be seen in the followmg, these properties play a very important role in our
suggestion to the extension problem.

Now, we attempt to expand a function f defined on D to 2 of which the interior
contains D. In the useful area D, we have a given surface z = f(z,y) and outside the
area, we are looking for a C? function which is differentiable across the boundary :

z, in D,
(2:3) Fla,y) = { ;((x,gz/j)) in Q—D,
where g is defined by
(2.4) 9(z,y) =f (@b, yb) + fo(zn, 46) A2, y) + fy(@b, o) B(z,y)
+ foa (@0, o) C(2,y) + fuy(zo,46) D(2,y) + fyy(zo, yo) E(z, y)

where (zy,yp) is chosen as a point in dD depending on the point (z,y) so that F is
a C? extension of f. That is to say, the boundary conditions are satisfied so that for
each (zp,yp) € 0D, we have

F(xp,yp) = f(zn,00),  Folwe,ys) = fol@o,yp),  Fy(@e,yp) = fy(z.Ub)
and

Fro(xo,96) = foa(To,up)s  Fay(To,u) = foy (@0, 9),  Fyy(To,Ub) = fyy(To, yb)-
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To the end, Taylor’s formula suggests a method that we extend the surface by replacing
the monomials appeared in the Taylor polynomial (2.1) of f by some other functions
satisfying the conditions as in (2.2). The function g in (2.4) of this extension is similar
to the Taylor expansion in the form. The functions 4, B,C, D, and E play an important
role in our suggestion and these functions satisfy the boundary conditions as given in
(2.2) to guarantee the C? extension.

Theorem 2.2. Let D C Q be subsets in R? and D belong to the interior of a region
Q € RZ. Assume that f is a C* function on D such that f and its derivatives are
continuous on dD. If F is a function on ) given by :

| fx) in D,
(2.5) F(X)_{ g(X) in Q- D,

where g is defined by
(2.6)
9(X) =f om(X) + fo(m(X))AX — 7(X)) + fy(m(X))B(X — 7(X))

+ foa(M(X)C(X = 7(X)) + fay(m(X))D(X — n(X)) + fiy (m(X) B(X — 7(X)).

with C? functions A,B,C, D, E satisfying the initial conditions as in (2.2), and m :
(Q—D)UdD — 3D is a C? function with identity on D. Then F is a C? extension
of f. :

Proof. Since g is C? in @ — D and f = g on 8D, it suffices to show that for every point
Xo = (zo,y0) € 0D, we have

fo(Z0,y0) = 9o(z0,w0),  fy(Zo,%0) = 9y(0,Y0)

and

fmz(-’EanO) = gzz(Z0, Y0) fzy(-'L'anO) = me(wﬂayﬂ)a fyy(3307yO) = gyy($0>y0)-

The proof is straightforward and we show only the equation f; = g, on 9D.
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Let denote 7(X) = (u(X),v(X)). Using chain rules, we obtain the first derivative g,
at a point X € Q- D,

92(X) =fz o m(X)uz(X) + fy o (X )z (X)
+ [fez 0 T(X)ug(X) + foy o m(X)v +(X)]JA(X — 7(X))
+ fz o m(X)[Ax(X = m(X))(1 — uz(X)) + Ay(X — 7(X))(—ve(X))]
+ [fye 0 T(X)ug (X) + fyy o 1(X)v(X)]B(X — (X))
+ fy o m(X)[Bo(X — 7(X))(1 — uz(X)) + By(X — m(X)
+ [fraz © T1(X)ug(X) + fyez 0 7(X)vz(X)]C(X — 7(X))
+ faz 0 M(X)[Ce(X = m(X))(1 — ug(X)) + Cy(X — m(X))(—vz(X))]
+ [faye © M(X)ug(X) + fyay 0 7(X)ve (X)]D(X — 7(X))
+ fay 0 T(X)[Dr(X — 7(X)) (1 — up(X)) + Dy(X — (X)) (—va2(X))]
+ [fayy © (X )ug(X) + fyyy © m(X)vg(X)]E(X — (X))
+ fyy 0 T(X)[Ee(X — 7(X))(1 =~ ug(X)) + By(X — m(X))(=vz(X))].

) (—vz(X))]

The initial conditions on A, B,C, D, and E imply that for each point X, on 9D we
have

g:c(XO) = fz(XO)'“'z(XD) + fy(XO)Uz(XO) + fac(XO)(l - Uz(XO)) + fy(XO)(“Uw(XO))
= fz(XO)

In the equation above, we used the continuity of these functions and their derivatives,

and the condition 7(X) = X on 8D as well. Hence we have shown that F is a 6’2
extension of f to Q. O

We call the functions A, B, C, D, and E given in Theorem 2.2 the control functions.

Remark 2.1. Note that the condition of the smoothness of the projection mapping =
implies also the smoothness of the boundary 8D. Thus the existence of such a mapping
7 depends strongly upon the geometry of the boundary 0D.

We present several sets of control functions A(z,y), B(z,y),C(z,y), D(z,y), and
E(=z,y) satisfying the boundary conditions as given in (2.2).
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Example 2.1.
4,T
Alz,y) = atan™ ()
B(z,y) = atan™'(})
_1 —1/T\\2
Ole,y) = (atan(2))
D(z,y) = a? tan—l(g) tan"l(g)
a a
_1 -1/Y\\2
B(z,y) = 3 (etan~ (D))
Example 2.2.
Alz,y) = a(eF + )
B(z,y) =y(e 7 + %)
C(ZL‘,y) = -z ¥
_2tn?

The parameter (8 controls the shape of the curve and surface.

Example 2.3.
| Alz,y) ==z
B(z,y) =y
Clz,y) = %xz
D(z,y) = =y
Bla,y) = 59

These functions give rise to the Taylor polynomial expansion but not enough for ma-
chining because they diverge as x and y become larger.
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Example 2.4.

A(z,y) = Jm
Blz,y) = 1+ ay?
Cloy) = i)’
D(=,y) = 1 +$OL’L‘2 1 —Fyozy2
E(z,y) = %(1 +yay2)2

These functions behave nicely because fhey are similar to those functions given in Ez-
ample 2.8 near the origin and decay with O(L) rate at oc.
3. APPLICATIONS TO SURFACE EXTENSION

3.1. Surface extension of a circular domain to a circular domain.

We consider the circular domain D,
D = {(z,y) € R? : 2* + y* < 400}
and we apply our suggestion to the domain (2,
Q = {(z,y) € R? : 400 < z* + y* < 1600}.
In this case, the projection mapping 7(z,y) is obviously defined by

_ 20z 20y
7.‘-(‘,an) _(\/1,'2—{-:(/2, \/52+y2)

It is easy to see that 7 is C? in (Q — D) U dD. We illustrate Theorem 2.2 by extending
the function f(z,y) = 22 + y? using the control functions given in the previous section.

0 20

Figure 1. Graph of f(z,y) = 22 + y?
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Figure 2. Graphs of F(z,y) and g(z,y) related to Example 2.1 witha =1
Figure 3. Graphs of F(xz,y) and g(z,y) related to Example 2.2 with 8 = 10
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Figure 4. Graphs of F(z,y) and g(z,y) related to Example 2.3

Figure 5. Graphs of F(z,y) and g(z,y) related to Example 2.4 with o
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Remark 3.1. (i) Since f(z,y) = z® + y? is a polynomial of degree 2, the Taylor
polynomial of degree 2 of f is equal to itself, so that the extension F(z,y) is the same
as f (see Figure 4.)

(i) The control functions given in Ezample 2.4 decay with a rate of 1/ z2 + y2, thus
values F(x,y) tend to fom(z,y), the values of f at boundary points w(z,y) as variables
increase. So this extension works nicely in the case when f behaves slowly near the
boundary (see Figure 10). However, when f fluctuates near the boundary, also F
fluctuates near the boundary D and gets plain rapidly in the outer domain (see Figure
4 and Figure 10 below).

3.2. Surface extension from a rectangle to a rectangle.

Now we consider the case of the rectangle domain D,
D ={(z,y) € R?: |2 <10, [y <10}
and we apply our suggestion to the domain {2,
Q={(z,y) € B®: |2 <20, [y <20}
In this case, the projection mapping 7(z,y) = (u(z,y),v(z,y)) is defined by

—10, if < -10, —-10, if y < -10,
u(x,y) = 10, if x>10, and wv(z,y) = 10, if y>10,
z, otherwise Y, otherwise

So 7 is not differentiable at the points in I,
I:={(z,£10) € Q : 10 < |z| < 20} U{(£10,y) € @ : 10 < |y| <20}

and the extension g may not be differentiable on T'. It comes from the fact that the
boundary curve 8D is not differentiable at the four vertices (£10,+10). Nevertheless,
we can see from the proof of Theorem 2.2 that g is C? on ) — I'. We illustrate our

w2 2
suggestion with the function f(z,y) = —The” 7~ defined on D by extending to Q
using the control functions given in the examples.
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z2+2

Figure 6. Graph of f(z,y) = —J3e™ 16
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Figure 10. Graph of F(z,y) related to Example 2.4 with o = 100

For the calculation of Gaussian and mean curvature, we can derive the function
values, derivative values, and second derivative values in D and §2.

Taylor’s series expansion may fluctuate more widely for larger values of variables and
it becomes unacceptable for some purposes, so we can not use it because the machining
is very difficult. In this situation, we use other functions instead of the control functions
given in Example 2.3. The control functions presented in Examples 2.2 and 2.4 have
very good behavior because they are smooth and good for matching. We have found
C? extensionable surface functions.
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