• Title/Summary/Keyword: Quadratic Model

Search Result 938, Processing Time 0.035 seconds

Evaluation of Design Fire Curves for Gas Fires in a Compartment Using CFAST (CFAST를 이용한 구획실 가스화재의 디자인 화재곡선 평가)

  • Baek, Bitna;Oh, Chang Bo;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.7-16
    • /
    • 2018
  • In this study, the prediction performance of design fire curves (DF) was evaluated for gas fires in a compartment by using CFAST. The CFAST simulations adopted the 2-stage DF suggested by the previous study and the Quadratic and Exponential DF suggested by Ingason. It was found by comparing the simulation and experimental results that the overall prediction performance of the design fire cures for the spatially-averaged temperature and concentrations of $O_2$ and $CO_2$ was, from the most reasonable to the most inaccurate, 2-stage DF > Quadratic DF > Exponential DF. The CFAST simulation could not predict for the difference in the spatially-averaged temperature and concentrations of $O_2$ and $CO_2$ at door and inner side locations in a compartment. The CFAST simulations also showed a limitation in the prediction of the spatially-averaged temperature at lower layer and the concentration of CO.

Application of trajectory data mining to improve the estimation accuracy of launcher trajectory by telemetry ground system (원격자료수신장비의 발사체궤적 추정정확도 향상을 위한 궤적데이터마이닝의 적용)

  • Lee, Sunghee;Kim, Doo-gyung;Kim, Keun-hyung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.5
    • /
    • pp.1-11
    • /
    • 2015
  • This paper is focused on how the trajectory of launch vehicle could be optimally estimated by the quadratic regression of trajectory data mining for the operation of telemetry ground system in NARO space center during real-time. To receive the telemetry data, the telemetry ground system has to track the space launch vehicle without tracking loss, and it is possible by the well-designed algorithm to estimate a flight position in real-time. For this reason, the quadratic regression model instead of interpolation was considered to estimate the exact position data of launch vehicle and the improvement of antenna performance. For analysis, the real trajectory data which had been logged during NARO 1st launch mission were used, the estimation result of launcher current position was analyzed by the mathematical modeling. In conclusion, the algorithm using quadratic regression based on trajectory data mining showed the better performance than previous interpolation algorithm to estimate the next flight position and the antenna driving performance.

A Study on the Optimal Forebody Forms for Minimum Wave Resistance (최소조파 저항성능을 갖는 최적 선수형상에 관한 연구)

  • Sung-Eun Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.28-39
    • /
    • 1991
  • A study on the optimization problems to find forebode shapes with minimum wavemaking and frictional resistance was performed. The afterbody was fixed as a given hull and only forebode offsets were treated as design variables. Design variables were divided into the offsets of given hull and small variation from them. For the wavemaking resistance calculation, Neumann-Kelvin theory was applied to the given hull and thin ship theory was applied to the small variation. ITTC 1957 model-ship correlation line was used for the calculation of frictional resistance. Hull surface was represented mathmatically using shape function. As object function, such as wavemaking and frictional rersistance, was quadratic form of offsets and constraints linear, quadratic programing problem could be constructed. The complementary pivot method was used to find the soulution of the quadratic programing problem. Calculations were perfomed for the Series 60 $C_{B}$=0.6. at Fn=0.289. A realistic hull form could be obtained by using proper constraints. From the results of calculation for the Series 60 $C_{B}$=0.6, it was concluded that present method gave optimal shape of bulbous bow showing a slight improvement in the wave resistance performance at design speed Fn=0.289 compared with the results from the ship theory only.

  • PDF

A New Sender-Side Public-Key Deniable Encryption Scheme with Fast Decryption

  • Barakat, Tamer Mohamed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3231-3249
    • /
    • 2014
  • Deniable encryption, introduced in 1997 by Canetti, Dwork, Naor, and Ostrovsky, guarantees that the sender or the receiver of a secret message is able to "fake" the message encrypted in a specific ciphertext in the presence of a coercing adversary, without the adversary detecting that he was not given the real message. Sender - side deniable encryption scheme is considered to be one of the classification of deniable encryption technique which defined as resilient against coercing the sender. M. H. Ibrahim presented a sender - side deniable encryption scheme which based on public key and uncertainty of Jacobi Symbol [6]. This scheme has several problems; (1) it can't be able to derive the fake message $M_f$ that belongs to a valid message set, (2) it is not secure against Quadratic Residue Problem (QRP), and (3) the decryption process is very slow because it is based dramatically on square root computation until reach the message as a Quadratic Non Residue (QNR). The first problem is solved by J. Howlader and S. Basu's scheme [7]; they presented a sender side encryption scheme that allows the sender to present a fake message $M_f$ from a valid message set, but it still suffers from the last two mentioned problems. In this paper we present a new sender-side deniable public-key encryption scheme with fast decryption by which the sender is able to lie about the encrypted message to a coercer and hence escape coercion. While the receiver is able to decrypt for the true message, the sender has the ability to open a fake message of his choice to the coercer which, when verified, gives the same ciphertext as the true message. Compared with both Ibrahim's scheme and J. Howlader and S. Basu's scheme, our scheme enjoys nice two features which solved the mentioned problems: (1) It is semantically secure against Quadratic Residue Problem; (2) It is as fast, in the decryption process, as other schemes. Finally, applying the proposed deniable encryption, we originally give a coercion resistant internet voting model without physical assumptions.

Effects of Climatic Elements on Soybean Yields (콩의 수량에 영향을 미치는 기상요소 평가)

  • E-Hun Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.4
    • /
    • pp.320-328
    • /
    • 1992
  • The soybean yield forcasting models based on climatic elements in six locations were estimated by the STEPWISE/MAXR, Cp statistics and GLM procedure of SAS. The climatic elements were aerial temperature, sunshine hours and precipitation from May to October in 20 years. The investigated six locations were Chunchon, Suwon, Cheongju, Kwangju, Iri and Jinju. The important climatic elements for main effects in Chunchon model were August sunshine hours-linear term, August precipitation-quadratic. June temperature to August precipitation and May temperature to August precipitation were interaction terms. The quadratic August precipitation was assumed to be related to yield in Chunchon. The main effects of Suwon were linear-June temperature, quadratic June sunshine hours and June precipitation. These terms affected yields negatively. The main effects of Cheongju were linear June temperature and quadratic August precipitation. May temperature to June precipitation, July to August precipitations were interactions. The main effects of Kwangju were linear July precipitation, quadratic June temperature and July precipitation. June to July sunshine hours of interaction terms influenced yield negatively. The main effects of Iri were linear May sunshine hours, quadratic May and July sunshine hours. May temperature to May precipitation and June to July precipitations affected yields negatively. The main effects of Jinju were linear June and August precipitations. August temperature to August sunshine hours, June sunshine hours to July precipitation and June to August precipitation were interactions. In linear terms, June and August precipitations and, in interactions, August to August sunshine hours were negative efficacies respectively. The included year variables in Chunchon, Suwon, Kwangju, and Jinju model building were recognized as a linear trend based on an assumption that the technological factors have improved through times.

  • PDF

ComputationalAalgorithm for the MINQUE and its Dispersion Matrix

  • Huh, Moon Y.
    • Journal of the Korean Statistical Society
    • /
    • v.10
    • /
    • pp.91-96
    • /
    • 1981
  • The development of Minimum Norm Quadratic Unbiased Estimation (MINQUE) has introduced a unified approach for the estimation of variance components in general linear models. The computational problem has been studied by Liu and Senturia (1977) and Goodnight (1978, setting a-priori values to 0). This paper further simplifies the computation and gives efficient and compact computational algorithm for the MINQUE and dispersion matrix in general linear random model.

  • PDF

An Efficient Method for Computing MINQUE Estimators in the Mixed Models

  • Lee, Jang-Taek;Kim, Byung-Chun
    • Journal of the Korean Statistical Society
    • /
    • v.18 no.1
    • /
    • pp.4-12
    • /
    • 1989
  • An efficient method for computing minimum norm quadratic unbiased estimates (MINQUE) of variance components in the mixed model is developed. This computing algorithm which used W-matrix saves both storage usage and computing time.

  • PDF

Autopilot design for BTT flight vehicles (이동중인 비행시스템의 자동조종장치 설계)

  • 백운보;허남수;이만형;황창선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.87-92
    • /
    • 1989
  • An autopilot for the class of Bank-To-Turn missiles is developed using a multivariable plant model & control design methodology. The roll-pitch-yaw cross coupling is included in the design considerations. Feedback system is designed using the Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR). Nonlinear simulations are presented to demonstrate the performances of the designed system.

  • PDF

Discrete-Time Robust $H_{\infty}$ Filter Design via Krein Space

  • Lee, T.H.;Jung, S.Y.;Seo, J.E.;Shin, D.H.;Park, J.B.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.542-547
    • /
    • 2003
  • A new approach to design of a discrete-time robust $H_{\infty}$ filter in finite horizon case is proposed. It is shown that robust $H_{\infty}$ filtering problem can be cast into the minimization problem of an indefinite quadratic form, which can be solved by implementing the Kalman filter defined in Krein space. The proposed filter is readily derived by simply augmenting the state space model and has the robustness property against the parameter uncertainties of a given system.

  • PDF