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ABSTRACT

An efficient method for computing minimum norm quadratic unbiased estimates
(MINQUE) of variance components in the mixed model is developed. This compu-
ting algorithm which used W-matrix saves both storage usage and computing time.

1. Introduction

An important procedure, minimum norm quadratic unbiased estimation (MINQUE)
developed by Rao, C.R.(1973) provides a unified approach to variance component estim-
ation in the mixed model. His principle of MINQUE is formulated through justifiable
theoretical and applied considerations. The universality of the MINQUE method as desc-
ribed in Rao and Kleffe (1980) and in this article arises from the following advantages:
(a) It involves no normality assumptions as do maximum likelihood (ML.) method and
restricted maximum likelihood(REML ) method.

(b) The equations that yield MINQUE do not have to be solved iteratively.

(c) It offers a wide scope in the choice of the norm depending on the nature of the model
and prior information available. ‘

(d) The method is applicable in situations where ML and REML fail.

(e) The ML and REML estimators can be exhibited as iterated versions of MINQUE's.
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(f) For a suitable choice of the nerm, the MINQUE estimators provide minimum variance
estimators when y is normally distributed.
However, MINQUE users may have hesitation because it contains numerous multipliations
and inversions on N X N matrix, where M is the number of observations, For the general
mixed model, Liu and Senturia(1977) reduced the computational load to the problem
which requires the inversion of a smaller m X m matnx, where m is the total number
of random levels in the mixed model. Also Wansbeek(1980) proved that the MINQUE
computation in the mixed model can be computed in O(N) time by using the regression
interpretation. His interpretation of the intermediate steps as regression residuals suggested
that a computation procedure that was more straightforward and simpler to program than
Liu and Senturia’s method. Later, Giesbrecht (1983) handled this difficulty as modification
of the W transformation which requires a series of sweep operations. In the case in which
cell replications exists, Kaplan(1983) further demonstrated potential improvement, While
these articles may be an appreciable reduction, the potential users still face disheartening
prospect of having to invert an m Xm matrix when m is too large.

The purpose of this thesis is to provide more efficient algorithm than any other algor-
ithm related to W-matrix for the MINQUE procedure. We give here a new approach
based on Lee and Kim(1988) as an extension of Kaplan’s work(1983).

2. The Estimator of MINQUE

The basic model we shall use in the mixed model analysis of variance is the one given
by Hartley and Rao(1967). It can be written as

y= Xa+Zb+Zb,+---+Zcbc+e (2.1)

where
y is a vector of N observations;
a is a vector of £ unknown constants, the fixed effects of the model:
X isan N X % incidence matrix of full column rank, corresponding to a:
Z;isan N X m; design matrix associated with the i-th random factor;
b, is a vector of m; variables, ;= 1,2,---c:
eisan N X 1 vector of independent variables from N(0, o2).
Suppose we wish to find the MINQUE of

L= pyi+ Pt +peot, (2.2)
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the following procedure may be utilized (Kshirsagar 1983).
Step 1. Find Hi=2Z,Z; (i=0,1,-¢) Zy= In.
Step 2. Find H= X% H,, R= H’- H*X(X'H'X)"X'H™.
Step 3. Find syi= tr(RH;RH;,), for all 4,j= 0,1,---c. Find S= (s).
Step 4. Find q=yRHRy,i= 0,1---c, and set g= vector of the gjs.
Step 5. Find the solution of the equations Sz——— q,

where y'=[83, 3,--5¢] .
These are the MINQUES of the individual variance components a5, o3, ++,0¢.
Step 6. Replace ¢f by its MINQUE 2 in the linear function (2.2) to be estimated to get
the MINQUE of L.

We shall now present a new procedure for the computation of MINQUE . From the
main result by Lee and Kim(1988), we know that only necessary informations in forming
W -matrix are knowing balanced matrices X,, Zo(i.e. there were one and only one obser-
vation in each cell), ¥ which is the vector of cell means, e’e which is the error sum of
squares, and diagonal matrix D containing the number of observations in each cell. The
essence of this paper is using this result. Therefore the calculation related to the N X N
inverse matrix H™ will be treated as the calculation of the » X n matrix, where n is the
number of nonempty cells. Obviously, # is smaller than m for crossed design with all
interaction terms present, for nested designs, and for designs with many empty cells. But
there exist designs, for example, which are additive or include only low-order interaction
factors and that have few empty cells, whose m is much smaller than «. In this case, with
assistance of matrix identity, the method can be transformed as the scheme of inverting
m X m matrix, still using the balanced structure of matrix and vector. Thus, the present
method reduces the computational requirements of MINQUE to a manageable level for
many cases,

3. The MINQUE Procedure

When we copmare the unbalanced design matrices X and Z, where Z= [Z,] Zo|-+1Z¢]
to the balanced matrices X, and Z,, respectively, then the matrices X and Z can be
written as a product X= TX, and Z= TZ,, where T is a replications matrix (See Kaplan
(1983) or Lee and Kim(1988)). Also the matrix of cell frequencies D can be obtained as
D= T'T. For example, in a two-way additive random effects model
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Yijg= st ai+ B+ eik

with I= 2, J= 2, ny= n,=2, n,= 3, np= 1, and the observations listed in the usual order

v'= (Y, Yuz Yz, Yizer Yizs, ***, Vo), We would have
1 07 r1 07
10 10
1 0 01
110 01
Z= 11 9 Z= g 1
0 1 10
0 1 10
Lo 1 L0 1]
r1 07 1 0
1 0 _lo 1
Zy= 01 =171
Lo 1 0 1.
r1L 0 0 07
1 000
0100 2000
o100 1 0300
T= 0100 D= 0020
001 0 0001
0010
_0001J

For the purpose of deriving necessary submatrices in MINQUE procédure, the following
lemmas are needed (see Lee and Kim(1988) for the detailed derivations for these lemm-
as).

Lemma 1. TH'T= (I+DZ,Z;)"D. (3.1)

Lemma 2. XH'X= XMX,, where M=(1+DZ,Z,)™D. (3.2)
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Lemma 3. Z'H'ly= ZMJ. (3.3)
Lemma 4. yH'y=yMy + ee. (34)

The following definitions of matrices are introduced for the simplicity of computation
in MINQUE procedure.

B= (I+DZ,Z;), C= B’, M= BD,

J= (X;MX,)?, P= X JXoM, A= I-P, K= MA, (3.5)

L= (CA):, V= ABK, F= DL,

Define now the following matrix operators:

S1(AB)= AKB, S2(AB)= A'VB,

QUAB)—= SI(AB), Q2(AB)= AFB+ee. (36)

Now we can obtain the MINQUE estimators by use of above notations,

Result 1. The component s; for all i, j= 12+ is given by s;= tr{S1(Zy, Zoj) S1(Zy,
Zo)} and sp for i= 1,2, c is given by sic= tr{S2(Z, Zy)}. Also sy is given by se=
tr(L)+ N-n,

Result 2. The element q, for i= 1,2,---,c is given by g= Q1(V,Z6) Q1(Zy,y) and qo is
given by q= Q2(vy,y).

The detailed explanation for these derivations is given in the Appendix. If we obtain
the matrix S and the vector g, then we have only to solve the linear system SZ: q.

4. Conclusions

Tt has been shown that MINQUE algorithm developed herein needs the inversion of an

n X » matrix, v, and e’e. Clearly, when # is small with respect to m, for example, the
designs that are crossed designs with all interaction terms present, this algorithm will yield
a considerable reduction in computational cost and effort. Conversely, if m is smaller than
n, for instance, the design that are additive, Liu and Senturia’s method seems to be sup-
erior to our procedure. In this point, Kaplan(1983) could not give a valid explanation.
However, as shown by Lee Kim(1988), an » X » martix can be converted as a expression
contained an m X m matrix. For example. the matrix B becomes B=(I4+DZ,Z;)'=1-DZ,
(14+Z5DZ,)Z¢ by help of well-known matrix identity: (I4+8T)"'= I-S(I+TS)"T. We
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see that (I+DZ,Z',)™ is an # X n matrix and ( 1+2ZDZ,) is an m X m matrix. There-
fore, we also provide the advantage of using ¥ and e’e still using the inversion of an m

X m matrix,
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Appoendix

A. Derivation of Result 1
(1) The matrix S whose 7j—th elements are

Si = tr{81(Z0:,Z0))S1(Z0,Z0:) } for all 4= 1,2,--c.

Proof. Note that

TRT= T(H'-H*X(XH'X)"XH")T
= MI-X,(X;MX,)*X;M)

Then siy= tr(RH:RH;)
= tr(ZRZ/ZRZ:)
= tr(Z,T'RTZoZ6 T'RTZ0)
= tr(ZoKZoZoKZn)
= tr{S1(Z0;,Z0)S1(Zoy,Zo:) }.

(2) The matrix S whose 70-th elements are
sio=tr{S2(Zu,Zo:) }
Proof. Observing that
T'H'= T (I1-TZZ(1+DZ,Z5)*T")

= (1= DZZ{(1+DZZ/,) )T’
= (I+DZ,Z)™'T’

for = 1,2, c.
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and
T'R= T'(H“—H“TXO(X'OMX(,)“XI,T'H“)
= (I-MX, ‘X;MX,)"X;) TH?
= A'BT"
Then sic= tr(RH:RH,)
= tr(RZZIR)

= tr(ZoTRRTZa)
= tr(Z&A'BDB'A Zo:)
= tr(ZsA'BMA Zo) using M= DB’
= tr(ZouA'BKZw)
= tr(ZoiVZoi)
= tr{S2(Zvi, Zo:)}. B
(3) The 00-th element of S is

s= tr(L.) + N—n.
Proof. Use the fact that

R= H'—H'TXJX,T'H*
= [—T(Z,Zs + BX,JXs)BT".

Then, se= tr(RR)= tr(L) + N—n from the definition of L. B
B. Derivation of Result 2
(4) The elements of ;. for i= 1,2,.--c are given by
a= A(y,Ze)(Zoy).
Proof. yRZi= y/(H*—H'TX JX, TH?) TZo:i
= y'H*T(I-XoJXM)Zuvi
= y'TB AZu

= DB AZn
= 7'KZoi.
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Then (4) is established. W

(5) The element qq is go= Q(7.7).

Proof. For the simplicity of notation,
let E= Z,Z:+B'XJX;.
Then q,= y'RRy
= y(I-TEBT))%y
= y/(I-2TEBT")y+y’( TEBDEBT')y
= yDy+ee—2y'DEBDy+7' D(EBD)%
. = yD(I-EBD)%¥ +e%e
= Q2(v,y). u
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