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and its Dispersion Matrix
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Abstract

The development of Minimum Norm Quadratic Unbiased Estimation (MINQUE)
has introduced a unified approach for the estimation of variance components in general
linear models. The computational problem has been studied by Liu and Senturia(1977)
and Goodnight (1978, setting a-priori values to 0). This paper further simplifies the
computation and gives efficient and compact computational algorithm for the MINQUE
and dispersion matrix in general linear random model. Keywords: J4-matrix, comput-
ational algorithm, variance components, MINQUE, linear random model, dispersion
matrix, a-priori weights.

1. Introduction and Problem Formulation.

The traditional analysis of variance method and its modifications for the estimation
of variance components have their origin from ad-hoc procedures and have few optimum
properties if the design is unbalanced. Recently many papers have been devoted to the
computational problems of maximum likelihood estimator (MLE) and restricted MLE
(REMLE) of the variance components for general linear model (see Harville, 1977
for example), however relatively few for MINQUE. MINQUE is powerfull in that the
method is a unified approach and the estimates are relatively insensitive to the a-
priori values. Several modifications have been suggested (see P.S.S.R. Rao, 1975 for
example), and some of them were derived because of computational complexities. This
problem was considerably alleviated by the work of Liu and Senturia (1977). Consider

the following general linear random model;
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Y=1p+X* 0+ + X*rar+e 1D

k=111

where Y is a (n+1) vector of responses, 1 is a (n-+1) vector of I's, is overall mean,
Xi*is given (n+1) Xm; matrix, a: is m;—vector of uncorrelated random variable with
mean ( and variance ¢.%, € is a vector of error component with mean 0 and variance
0%, and finally all the components are uncorrelated.
Let C donote a #x (n+1) complete set of orthogonal contrast such that C 1=0, CC’
=1, Then C'C=I—J/(n+1) where /=1.1. Multiplying C to both sides cf (1.1) yields
Z=CY=X(a_,:a_,::a_.)+Ce 1.2
where Xy n=C(X;* : - X)=CX*, m=3Y " m;
Expectation and variance of the model (1.2), then is
E(Z)=0
VX)) =oi(I+Z*pV)=0iH .3
where V;=CX:X;’C’, and p;=0:2/°}
It can be shown that (Rao, 1971) MINQUE of the model (1.1) is equivalent to that of
the model (1.2) and is obtained by solving the following systems of linear equations
with respect to
o' =(01% 0%, 0:%,0%),
So=u,
where S is (k+1) dimensional symmetric matrix with its (Z,7) th elements as
tr(RV:RV;), and #n dimensional symmetric matrix
R=I+rVi+ -+ VD,
and k+1 vector
u=2'RV:RZ with Vi, =1
and finally 7; is the a-priori weight of p:
It will be assumed throughout that MINQUE is estimable or S is invertible. Also R

is assumed to be determined uniquely.

2. Computational Algorithm of MINQUE

Let D, denote a mxm diagonal matrix such as
tlI’"l
Dg: ti[m‘ (2. 1)
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for any choice of k-vector = (¢, t,, ++++-+ , ), Further ¢ or j subscripted to D, let it
be the diagonal matrix with 7 th or j th subdiagonal elements equal to 1 and all other
elements equal to 0.
With the above convention, we have
Vi=XD:; X'
H=I1+XD,x’ 2.2)
R=({+XD.X")",
where p and 7 are k-vectors with their elements p: and 7: respectively. From Rao
(1973, p.33), the following holds.
R=I-XD,"+X'X)' X' (CRH)]

For conveniency, let P be mxm matrix (D,'+X'X)"t and let P;; be m:xm; sub-

matrix of P such that
P= {Pii}, ivj:1925°"a k~
Then R=I-XPX' (D)

k
Hereafter }.;* will be used instead of Y
i=1

Lemma 1

) XXP=I,—D, ' P

i) tr(R)=n—m—X% tr(Pu)/r:

iii) X’RX=X'XPD,"*=D."\PX'X=D,"'-~D,"t PD,"

iv) RU+XD.X)=1+XP4.X', where 4,=(D,—D,)D,! for

any ¢ appropriately defined and tr(A) denotes the trace of a square matrix A.
Proof

) XXP=(—-D,"+D,"'*+ X' X)P=I,—D,'\P from the definition of P.

i) tr(R)=tr(l,— XPX)=n—tr (X' XP)=n—m+ 3 *P:/r:

i) X'RX=X'(I-XPX)=X'X-X'XPX'X=X'X(I-PX'X)=X'XPD."! from i).

iv) R(U+XD.X')=I-XPX'+RXD.,X'

RX=(U-XPX)YX=X—-XPX'X=XPD,! from 7)

Hence RXD.X'--XPX'=XPD,\D.X'—XPX'=XPD."'(D,--D,)X=XP4,X'
and the result follows.

Using the above lemma, we have the the following expressions for the elements of
S-matrix and u-vector.

si=tr(RViRV)), for i,j=1,2,+-, k
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=tr[Di(I—PD, )D;(I-PD, )] /r;r; from iii)
=tr[D;;~PD, *D;—PD.'\D;;+ D:PD,'D;PD. V] /r:r;
where Di;=D;D;= (¢, if i#j
[[,,,,-, if i=j
Letting || A|| denote the sums of square for all the elements of matrix A, the foll-
owing results can be oftained for i,j=1.2. ---k.
Siy= (|1 Pis}| 7ars, if i#5 2.8)
l L1 Pallara, if i=j
Sien=tr(RV;R), for i=1,2,, k
=tr RV,R(R1—=3 *;V})
=tr(RV)— X 78
=tr(D;X'RXD;)— Y i*r:Si;
=m;/ri—tr(P:) /r2— 3 #r;8:; from iii) 2.9
Sisr, k1 =tr(RR)
=tr{R(R™'— X}, V)R]
=tr(R) — X 7S, 541

[m;—%—tr(P.-;) +

=n—m—2Mr(P)/ri— Z 7S5k (2.10)
wi=Z'RV,RZ, for i=1,2,:, &
=Z'RXD;X'RZ ‘
=7'XPD.PX'Z/r?2, from iil) 2.1
Ury=2Z'RRZ

=Z'R(R'\—Z}r;,VORZ
=Z'RZ— 3 *ru;
=2'Z—2'XPX' Z— Y i*ru; 2.12)
Finally Z'Z, Z'X, X'X can be obtained from the mean adjusted sums of square matrix
usually calculated for normal equation.
Summarizing the above, MINQUE computation of the model (1.1) proceeds as in the

following.

1) Compute m-+1 dimensional mean adjusted sums of square matrix
z’zZ zZ'X
[Symm X'X }

ii) Determine the a-priori values, #, and compute m Xm matrix
P=D,"+X'X)"!
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iii) Follow (2.8) through (2.12) to obtain S and «

iv) Obtain MINQUE by solving So=u.

It can easily be observed from above that once mean adjusted sums of square matrix
in step (i) and the inversion of a mXxm symmetric matrix is obtained, S matrix and

u-vector needs number of multiplications proportional to m?2.

3. Dispersion matrix of MINQUE

For derivation of dispersion matrix of MINQUE, normality is assumed, and since
MINQUE is unbiased regardless of the a-priori values, variance of the estimator is
mean square error.

Rewrite So=u of (1.4) as

o=S"u=2'A,Z 3.1
where A=Y #*1sRV,R
=si4*1 R(I+XDyX")R, for i=1,2,+, k 3.2

and s; subscripted to D-matrix is & vector with j th element s¥/s>*1 and s is (4, )
th element of S-!
Using the result of Searle (1971, p.55), variance of the statistic in (3.1) becomes
V(o) =20*tr(A:HA;H), for i,j=1,2,--k+1
Now tr (A:HA;H)
= (shrHigh B O [R(I+ XD, X )RHR(I+ XD, X' )RH] (3.3
The quantity inside the trace is equal to
U+ XP4:X") (I+P4,X") (I+XP4:X") (I+XP4,X")
using iv) of lemma 1. Applying the property that the trace is invariant under the
cyclic permutation of the operand matrices, the following lemma holds.
Lemma 2
The (7,7) th element of the dispersion matrix of MINQUE for the model (1. 1 is
20tsh it sh b Ty 4 tr (T, T, T,T,) ]
where T; and T,are mxm matrices such as
To=I+X'XPdy=I+({I-D,"'P)4, and
Ti=I+X'XPds;=1+(I- D, '\P) ds;,
for 4,j=1,2,-k+1
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4. Conclusions

It has been shown that MINQUE algorithm developed herein needs number of multip-
lications proportional to the square of total number of levels once the mean adjusted
sums of suquares for the response and design matrix and the inversion of mXm sym-
metric matrix is obtained. As the studies by Hess (1979), Huh and Webster (1981)
suggests, MINQUE could yield sensitive estimates if the weights of the a-priori values
are under-estimated. Hence the suggestions of the a-priori values equal to 1 (Rao,
1972), or equal to 0 (Goodnight, 1978) could yield bad estimates. The properties of the
MINQUE could be further investigated utilizing the algorithm on the dispersion matrix

developed.
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