• Title/Summary/Keyword: QoS :Quality of service

Search Result 1,467, Processing Time 0.031 seconds

Design and Implementation of CORBA based on Multi-Threaded in Open Network Environments (개방형 네트워크 환경을 위한 멀티쓰레드 기반 코바 설계 및 구현)

  • Jang, Jong-Hyeon;Lee, Dong-Gil;Han, Chi-Mun
    • The KIPS Transactions:PartC
    • /
    • v.9C no.2
    • /
    • pp.213-220
    • /
    • 2002
  • Distributed competing system gives a new system architecture to be taken into consideration for solving the problems of interoperability of heterogeneous systems. In the present paper, CORBA based on multi-threaded interoperates with software blocks at physically isolated hardware. We show how archives optimal CORBA system from analysis of required functions, implementations of protocols and benchmarking of system performance in the Open Multi-service Network System Environment. The core features of our CORBA system are restricted Quality of Service based on priority, timeout service and exception status information notify to the related software blocks. And the objectives are design and implementation of high performance multi-threaded middleware and satisfied with extendibility, flexibility and stability of CORBA platform.

Estimating the Optimal Buffer Size on Mobile Devices for Increasing the Quality of Video Streaming Services (동영상 재생 품질 향상을 위한 최적 버퍼 수준 결정)

  • Park, Hyun Min
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.3
    • /
    • pp.34-40
    • /
    • 2018
  • In this study, the optimal buffer size is calculated for seamless video playback on a mobile device. Buffer means the memory space for multimedia packet which arrives in mobile device for video play such as VOD service. If the buffer size is too large, latency time before video playback can be longer. However, if it is too short, playback service can be paused because of shortage of packets arrived. Hence, the optimal buffer size insures QoS of video playback on mobile devices. We model the process of buffering into a discret-time queueing model. Mean busy period length and mean waiting time of Geo/G/1 queue with N-policy is analyzed. After then, we uses the main performance measures to present numerical examples to decide the optimal buffer size on mobile devices. Our results enhance the user satisfaction by insuring the seamless playback and minimizing the initial delay time in VOD streaming process.

Joint Resource Allocation for Cellular and D2D Multicast Based on Cognitive Radio

  • Wu, Xiaolu;Chen, Yueyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.91-107
    • /
    • 2014
  • Device-to-device (D2D) communication is an excellent technology to improve the system capacity by sharing the spectrum resources of cellular networks. Multicast service is considered as an effective transmission mode for the future mobile social contact services. Therefore, multicast based on D2D technology can exactly improve the spectrum resource efficiency. How to apply D2D technology to support multicast service is a new issue. In this paper, a resource allocation scheme based on cognitive radio (CR) for D2D underlay multicast communication (CR-DUM) is proposed to improve system performance. In the cognitive cellular system, the D2D users as secondary users employing multicast service form a group and reuse the cellular resources to accomplish a multicast transmission. The proposed scheme includes two steps. First, a channel allocation rule aiming to reduce the interference from cellular networks to receivers in D2D multicast group is proposed. Next, to maximize the total system throughput under the condition of interference and noise impairment, we formulate an optimal transmission power allocation jointly for the cellular and D2D multicast communications. Based on the channel allocation, optimal power solution is in a closed form and achieved by searching from a finite set and the interference between cellular and D2D multicast communication is coordinated. The simulation results show that the proposed method can not only ensure the quality of services (QoS), but also improve the system throughput.

Spreadsheet Model Approach for Buffer-Sharing Line Production Systems with General Processing Times (일반 공정시간을 갖는 버퍼 공유 라인 생산시스템의 스프레드시트 모형 분석)

  • Seo, Dong-Won
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.119-129
    • /
    • 2019
  • Although line production systems with finite buffers have been studied over several decades, except for some special cases there are no explicit expressions for system performances such as waiting times(or response time) and blocking probability. Recently, a max-plus algebraic approach for buffer-sharing systems with constant processing times was introduced and it can lead to analytic expressions for (higher) moment and tail probability of stationary waiting. Theoretically this approach can be applied to general processing times, but it cannot give a proper way for computing performance measures. To this end, in this study we developed simulation models using @RISK software and the expressions derived from max-plus algebra, and computed and compared blocking probability, waiting time (or response time) with respect to two blocking policies: communication(BBS: Blocking Before Service) and production(BAS: Blocking After Service). Moreover, an optimization problem which determines the minimum shared-buffer capacity satisfying a predetermined QoS(quality of service) is also considered.

Achieving Relative Loss Differentiation using D-VQSDDP with Differential Drop Probability (차별적이니 드랍-확률을 갖는 동적-VQSDDP를 이용한 상대적 손실차별화의 달성)

  • Kyung-Rae Cho;Ja-Whan Koo;Jin-Wook Chung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.1332-1335
    • /
    • 2008
  • In order to various service types of real time and non-real time traffic with varying requirements are transmitted over the IEEE 802.16 standard is expected to provide quality of service(QoS) researchers have explored to provide a queue management scheme with differentiated loss guarantees for the future Internet. The sides of a packet drop rate, an each class to differential drop probability on achieving a low delay and high traffic intensity. Improved a queue management scheme to be enhanced to offer a drop probability is desired necessarily. This paper considers multiple random early detection with differential drop probability which is a slightly modified version of the Multiple-RED(Random Early Detection) model, to get the performance of the best suited, we analyzes its main control parameters (maxth, minth, maxp) for achieving the proportional loss differentiation (PLD) model, and gives their setting guidance from the analytic approach. we propose Dynamic-multiple queue management scheme based on differential drop probability, called Dynamic-VQSDDP(Variable Queue State Differential Drop Probability)T, is proposed to overcome M-RED's shortcoming as well as supports static maxp parameter setting values for relative and each class proportional loss differentiation. M-RED is static according to the situation of the network traffic, Network environment is very dynamic situation. Therefore maxp parameter values needs to modify too to the constantly and dynamic. The verification of the guidance is shown with figuring out loss probability using a proposed algorithm under dynamic offered load and is also selection problem of optimal values of parameters for high traffic intensity and show that Dynamic-VQSDDP has the better performance in terms of packet drop rate. We also demonstrated using an ns-2 network simulation.

Performance Analysis about the Failure Restoration Scheme Using a Multi-path in Hierarchical MPLS Networks (계층형 MPLS 네트워크에서 다중 경로를 이용한 장애 복구 방안에 관한 성능 분석)

  • Jang, Seong-Jin;Kim, Ki-Yong;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.61-64
    • /
    • 2007
  • MPLS networks architectures have been prevailed as scalable approach to provide quality of service in the Internet. Many researches have been mainly focused on scalability and multi-path calculation scheme for failure restoration. However, the MPLS network have an scalability problem about traffic, and the existing failure restoration methods are wasted resources, and it has the problem that loss of a packet by a lot of delay occurs in too. Therefore in this paper, we propose a H-MPLS (Hierachical-Multiprotocol Label Switching)network for rapidly failure restorations and effective management of network extended. The proposed H-MPLS Network apply LSP multi-path routing algorithm and consists of several MPLS. After comparing the performance among the existing failure restoration methods with various network models, we use NS simulator in order to analyze the performance. Finally, we present an improvement scheme of the efficiency and scalability.

  • PDF

Robust Secure Transmit Design with Artificial Noise in the Presence of Multiple Eavesdroppers

  • Liu, Xiaochen;Gao, Yuanyuan;Sha, Nan;Zang, Guozhen;Wang, Shijie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2204-2224
    • /
    • 2021
  • This paper studies secure wireless transmission from a multi-antenna transmitter to a single-antenna intended receiver overheard by multiple eavesdroppers with considering the imperfect channel state information (CSI) of wiretap channel. To enhance security of communication link, the artificial noise (AN) is generated at transmitter. We first design the robust joint optimal beamforming of secret signal and AN to minimize transmit power with constraints of security quality of service (QoS), i.e., minimum allowable signal-to-interference-and-noise ratio (SINR) at receiver and maximum tolerable SINR at eavesdroppers. The formulated design problem is shown to be nonconvex and we transfer it into linear matrix inequalities (LMIs). The semidefinite relaxation (SDR) technique is used and the approximated method is proved to solve the original problem exactly. To verify the robustness and tightness of proposed beamforming, we also provide a method to calculate the worst-case SINR at eavesdroppers for a designed transmit scheme using semidefinite programming (SDP). Additionally, the secrecy rate maximization is explored for fixed total transmit power. To tackle the nonconvexity of original formulation, we develop an iterative approach employing sequential parametric convex approximation (SPCA). The simulation results illustrate that the proposed robust transmit schemes can effectively improve the transmit performance.

Topology Aggregation Schemes for Asymmetric Link State Information

  • Yoo, Young-Hwan;Ahn, Sang-Hyun;Kim, Chong-Sang
    • Journal of Communications and Networks
    • /
    • v.6 no.1
    • /
    • pp.46-59
    • /
    • 2004
  • In this paper, we present two algorithms for efficiently aggregating link state information needed for quality-of-service (QoS) routing. In these algorithms, each edge node in a group is mapped onto a node of a shufflenet or a node of a de Bruijn graph. By this mapping, the number of links for which state information is maintained becomes aN (a is an integer, N is the number of edge nodes) which is significantly smaller than N2 in the full-mesh approach. Our algorithms also can support asymmetric link state parameters which are common in practice, while many previous algorithms such as the spanning tree approach can be applied only to networks with symmetric link state parameters. Experimental results show that the performance of our shufflenet algorithm is close to that of the full-mesh approach in terms of the accuracy of bandwidth and delay information, with only a much smaller amount of information. On the other hand, although it is not as good as the shufflenet approach, the de Bruijn algorithm also performs far better than the star approach which is one of the most widely accepted schemes. The de Bruijn algorithm needs smaller computational complexity than most previous algorithms for asymmetric networks, including the shufflenet algorithm.

Analytical Study of the Impact of the Mobility Node on the Multi-channel MAC Coordination Scheme of the IEEE 1609.4 Standard

  • Perdana, Doan;Cheng, Ray-Guang;Sari, Riri Fitri
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.61-77
    • /
    • 2017
  • The most challenging issues in the multi-channel MAC of the IEEE 1609.4 standard is how to handle the dynamic vehicular traffic condition with a high mobility, dynamic topology, and a trajectory change. Therefore, dynamic channel coordination schemes between CCH and SCH are required to provide the proper bandwidth for CCH/SCH intervals and to improve the quality of service (QoS). In this paper, we use a Markov model to optimize the interval based on the dynamic vehicular traffic condition with high mobility nodes in the multi-channel MAC of the IEEE 1609.4 standard. We evaluate the performance of the three-dimensional Markov chain based on the Poisson distribution for the node distribution and velocity. We also evaluate the additive white Gaussian noise (AWGN) effect for the multi-channel MAC coordination scheme of the IEEE 1609.4 standard. The result of simulation proves that the performance of the dynamic channel coordination scheme is affected by the high node mobility and the AWGN. In this research, we evaluate the model analytically for the average delay on CCHs and SCHs and also the saturated throughput on SCHs.

Fair Power Control Using Game Theory with Pricing Scheme in Cognitive Radio Networks

  • Xie, Xianzhong;Yang, Helin;Vasilakos, Athanasios V.;He, Lu
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.183-192
    • /
    • 2014
  • This paper proposes a payment-based power control scheme using non-cooperative game with a novel pricing function in cognitive radio networks (CRNs). The proposed algorithm considers the fairness of power control among second users (SUs) where the value of per SU' signal to noise ratio (SINR) or distance between SU and SU station is used as reference for punishment price setting. Due to the effect of uncertainty fading environment, the system is unable to get the link gain coefficient to control SUs' transmission power accurately, so the quality of service (QoS) requirements of SUs may not be guaranteed, and the existence of Nash equilibrium (NE) is not ensured. Therefore, an alternative iterative scheme with sliding model is presented for the non-cooperative power control game algorithm. Simulation results show that the pricing policy using SUs' SINR as price punishment reference can improve total throughput, ensure fairness and reduce total transmission power in CRNs.