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Fair Power Control Using Game Theory with Pricing
Scheme in Cognitive Radio Networks
Xianzhong Xie, Helin Yang, Athanasios V. Vasilakos, and Lu He

Abstract: This paper proposes a payment-based power control
scheme using non-cooperative game with a novel pricing function
in cognitive radio networks (CRNs). The proposed algorithmcon-
siders the fairness of power control among second users (SUs)
where the value of per SU’ signal to noise ratio (SINR) or dis-
tance between SU and SU station is used as reference for pun-
ishment price setting. Due to the effect of uncertainty fading en-
vironment, the system is unable to get the link gain coefficient to
control SUs’ transmission power accurately, so the qualityof ser-
vice (QoS) requirements of SUs may not be guaranteed, and the
existence of Nash equilibrium (NE) is not ensured. Therefore, an
alternative iterative scheme with sliding model is presented for the
non-cooperative power control game algorithm. Simulationresults
show that the pricing policy using SUs’ SINR as price punishment
reference can improve total throughput, ensure fairness and reduce
total transmission power in CRNs.

Index Terms: Cognitive radio networks (CRN), fairness, game the-
ory, power control, price.

I. INTRODUCTION

Cognitive radio (CR) is an enabling technique that promises
to overcome the problem of spectrum scarcity caused by the cur-
rent way of fixed spectrum allocation. The Federal Communica-
tions Commission (FCC) found the utilization of the spectrum
is low most of the time [1]. Thus, the technology of cognitive
radio networks (CRNs) [2] is proposed to solve the problem of
spectrum scarcity and improve spectrum efficiency.

In CRNs, power control deals with the selection of proper
transmission power for second users (SUs) that achieves high
spectrum efficiency by enabling SUs to reuse the primary users
(PUs) spectrum bands under the interference constraints im-
posed by PUs. In the next generation wireless communica-
tions, SUs are expected to be uncoordinated opportunistic users,
whereas there are conflicting interests among the SUs [3]. This
motivates the use of non-cooperative game theory to performre-
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searches on CRNs (see a survey paper [4]).
Non-cooperative power control game (NPG) was developed

in [5], in which the existence and uniqueness of ‘Nash equilib-
rium (NE)’ were verified, based on NPG with pricing (NPGP)
achieved Pareto improvement by introducing a linear-pricing
into the utility function [6]. Considering the fluctuation of ra-
dio resource in CRNs, it is desirable to investigate more ef-
fective game algorithms. A linear pricing function based on
throughput has been proposed under single-user and multi-users
scenario in [7], [8]. Different game theories were applied to
form power control algorithms in [9], [10], where effectivere-
ceiver and strategy attempted to maximize global utility were
developed. The finitely repeated game and discounted repeated
game have been proposed to achieve Pareto improvement in the
energy-efficient power control game [11]. In order to improve
convergence speed, a modified shuffled frog leaping algorithm
(NPG-MSFLA) for solving NE was proposed in [12]. For power
control in the underlay scenario, a new iterative algorithmus-
ing game theory has been proposed in [13]. In [14], a realis-
tic primary-secondary game theoretic scheme was proposed,in
which Rician and Rayleigh fast flat fading channels were ana-
lyzed, but energy efficiency was not taken into account. More-
over, an efficient swarm intelligent algorithm based on power
control game (NPGP-ESIA) with underlay spectrum access to
attain NE was proposed in [15]. Also, a better global utilityis
achieved and the transmission quality of PUs and SUs is guar-
anteed by NPGP-ESIA.

In addition, the issue about pricing in power control game
CRNs was important for NPGP. In [16], the authors investi-
gated the pricing issue for the power control problem in CRNs.
In [17], the optimal investment and pricing decisions in CRNs
under spectrum supply uncertainty were addressed. In [18],the
authors proposed a joint pricing and power control scheme for
CRNs. Another important issue of power control is to reduce
power consumption to extend terminal’s life-time [19]. Consid-
ering the utility of the base station (BS) is non-convex func-
tion, it is difficult to find the optimal pricing scheme, so the
literature [20] presented a novel price-based power control al-
gorithm to find the optimal price for each SU. However, those
papers ignored the minimum signal to interference plus noise
ratio (SINR) requirement among SUs and fairness issue in the
CRNs. Therefore, several payment schemes [16], [21], [22] un-
der a game theoretic framework termed non-cooperative game
with pricing, as an attempt to provide throughput fairness among
SUs. The paper [16] proposed a novel non-cooperative game
power control model to verify the sub-optimality, fairness, and
efficiency of the proposed pricing scheme. A double-threshold
adaptive algorithm [21] based on game theory was proposed
to optimize the power control as well as maintain the fairness
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among SUs in CRNs. In [22], a cost function based on fairness
is designed, a power control algorithm based on SINR cost func-
tion was presented, and a non-cooperative power control game
via fairness pricing (NPGFP) algorithm was developed. How-
ever, those research studies didn’t take the energy efficiency into
account, and the minimum SINR requirement among each SU
was also ignored, too.

In this paper, inspired by the game theory used in networks,
we propose a dynamic power control scheme based on non-
cooperative game theory for power control in CRNs. In this
power control game algorithm (NPGP), where the value of each
SU’s SINR or position distance is used as the punishment pric-
ing setting reference in CRNs, as an attempt to provide through-
put fairness among SUs. In addition, due to the effect of un-
certainty fading environment, the system disables to get the
link gain coefficient to control SUs’ transmission power accu-
rately, the minimum quality of service (QoS) requirements of
SUs may not be guaranteed, and the existence of NE is not en-
sured. Therefore, an alternative iterative algorithm withthe slid-
ing model called (R-NPGP) is presented based on the NPGP
algorithm in order to guarantee user’s QoS requirement and en-
sure fairness among SUs.

The rest of the paper is organized as follows. Section II de-
scribes the system model. In Section III, we study the conven-
tional non-cooperative power control game algorithms, andpro-
pose our non-cooperative power control game model with four
pricing punishment parameter setting strategies. This section
also investigates the existence of NE in the proposed scheme.
An available iterative algorithm with sliding model is presented
to guarantee SUs’ QoS requirement and ensure the existence of
NE in Section IV. Simulation results and analysis are illustrated
in Section V. Finally, Section VI concludes this paper.

II. SYSTEM MODEL

In this paper, we set a CNR shown in Fig. 1 and focus on
uplink power control game. For simplicity, it is assumed that
one PU link which consists of a primary transmitter and an ac-
cess point (AP) and SUs are collocated in the CRN. The sec-
ondary base station (SBS) is located at the centre of the network.
Several SUs near the primary transmitter will interfere with the
primary transmitter to a certain degree. Therefore, SUs should
limit their transmission power to avoid extreme interference.

One of the designing goals of power control in a CRN is to
ensure that no SU’s SINRγk falls below its thresholdγmin

k to
ensure minimum transmission QoS requirement. Thus, there is

γk ≥ γmin
k , ∀k. (1)

For individual mobiles, this threshold can be calculated to
maintain a satisfactory frame error rate. The SINR of thekth
SU can be defined as

γk(pk) =
Ghkpk

∑K
i=1,i6=k hipi + σ2

, k = 1, 2, · · ·,K (2)

wherepk denotes thekth SU’s transmission power, is the pro-
cessing gain respectively,hk denotes the channel link gain of
the communication link between thekth SU and the SBS,σ2 is
the power of the Gaussian noise.

SBS

Communication link

Interference link

1SU 2SU

SUk

1h 2h

kh

PU

Primary

AP

1g 2g

kg

Fig. 1. Illustration of system model.

In this model, the total interference power made by SUs
should be below a given thresholdT to ensure the SUs’ trans-
mission would not cause unendurable interference to the PU

K
∑

k=1

gkpk ≤ T, k = 1, 2, · · ·,K (3)

wheregk denotes the link gain from thekth SU to AP. Mean-
while, the power of thekth SU satisfies0 ≤ pk ≤ pk,max.

III. NON-COOPERATIVE GAME ALGORITHM FOR
POWER CONTROL

Non-cooperative game theory plays an important role in the
complicated and competitive schemes in CRNs. In this section,
motivated by conventional classic non-cooperative game algo-
rithms, we investigate the design guideline of pricing function
in the NPGP. It is challenging to find an optimal power control
strategy with fairness among all SUs. Therefore, a novel pricing
function of each SU is developed, and we prove that the pro-
posed game model has a NE by supermodular game theory.

A. Conventional Classic Non-Cooperative Game Algorithm

Game theory represents a set of mathematical tools developed
for the purpose of analyzing player interactions in decision pro-
cesses. This paper proposes a game model to control transmis-
sion power among SUs in CRNs, and uses the SINR value as the
punishment price reference. We define the power control prob-
lem as a non-cooperative game to get the solution for the power
control problem

Θ = {K, {Pk}, {Uk(·)}} (4)

wherek = [1, 2, · · ·,K] is the index of the participating SUs,
who are decision makers that select a particular power levelto
transmit;Pk denotes the set of transmission power strategies of
thekth SU,andUk(·) is the utility functions of thekth SU.

The profit in the power control game is usually determined by
a given utility function. The utility function in [6] can be written
as

NPGP : Uk(pk,P−k) =
LR

Mpk
(1− e−γk/2)M − c1pk (5)
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whereM is the length of the packet and every SU transmits
L information bits in every packet (L < M ), c1is predefined
positive cost factor,P−k is all SUs power vector sets except for
the kth SU: P−k = [p1, p2, · · ·, pk−1, pk+1, · · ·, pK ], andR is
the transmission rate. Based on the utility function above,a
more effective one has been proposed in [12] as follows

NPG−MSFLA : Uk(pk,P−k) =
LR

Mpk
(1 − e−γk/2)M

− c2e
pk − c3(γk − γmin

k )
(6)

wherec2 andc3 are predefined positive cost factors. In (5) and
(6), the same efficiency functionf(γk) related to non-coherent
frequency shift keying (FSK) modulation scheme defined to
match with the frame success ratio (FSR), which the efficiency
function can be described as follows

f1(γk) = (1− e−γk/2)M . (7)

A novel utility function based on a new-designed pricing
function was proposed in [15], which is defined as follows

NPGP− ESIA : Uk(pk,P−k) =
LR

Mpk

1− e−γk

1 + eγk−γmin

k

− αeβ((γk/γ
min

k
)−1) pk

pth

(8)

whereα andβ are positive constants. The unit ofα is bits/Joule
andα is used to adjust the order of punishment. In the paper,
the authors set the parameters:α = 2 andβ = 1. Moreover,
f2(γk) = (1 − e−γk)/(1 + eγk−γmin

k ) represents the efficiency
function based on the sigmoid function [23].pth denotes the
available interference power of the SU maximum signal leak-
age power interference from other SUs. The average interfer-
ence power threshold can be obtained by the mean value ofpthk
: pth = (pth1 + pth2 + · · ·+ pthK )/K.

B. The Proposed Game Model

In this section, we propose a novel pricing algorithm to max-
imize its revenue according to the property of the transmission
power of SUs under the optimal price. Moreover, in order to
reduce the computational complexity, a new efficiency function
is presented in this section.

Inspired by the sigmoid function [24], we define the “effi-
ciency function” in order to reduce the complex to implementin
practice as follows

f3(γk) =
1

1 + eγ
min

k
−γk

. (9)

This sigmoid efficiency functionf3(γk) is related with user’s
SINR and can be used regardless of the modulation of radio
access technology. The presented efficiency function is theS-
shaped (sigmoidal) withf(∞) = 1, andf(0) = 0 to ensure
Uk = 0 whenpk = 0.

The comparison among these efficiency functions is shown in
Fig. 2.

Pricing issue is a tool that improves performance by en-
couraging the users to use system resources more efficientlyin
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Fig. 2. Different efficiency functions comparison.

an efficient pricing mechanism, where decentralized decisions
are compatible with the overall system performance. So, non-
cooperative power control game pricing model provides a better
power control solution as follows

NPGP : max U∗
k (pk,P−k) = Uk(pk,P−k)− ck(pk,P−k)

(10)
whereck : P −→ R+ is the pricing function of the SU. In this
paper, we haveck(pk,P−k) = µλk(pk/p

th), whereλk denotes
the punishment parameter of the SU,µ is positive cost factor.
The pricing punishment parameter setting among all SUs are
different according to their general situation.

Therefore, our proposed NPGP pricing model is expressed as

NPGP : max U∗
k (pk,P−k) =

LR

Mpk

1

1 + eγk−γmin

k

− µλk
pk
pth

.

(11)
The pricing function is a nonlinear function of the received

power to indicate interference to other SUs achieving bet-
ter throughput performance. So, we adopt an adaptive pricing
scheme in whichλk varies for different SUs based on their gen-
erated conditions. Therefore, we propose four following adap-
tive pricing punishment parameter setting policies.

Before the discussion of the policies, a performance metricis
needed to assess the fairness incurred in the system as a result
of competition in our metric. The throughput fairness factor is
adopted here [25] and defined as

ξ = 1−

(

1

T

)

√

1

N − 1

K
∑

k=1

(

Tk

Tmax
k

− T

)2

(12)

whereTmax
k is the maximal throughput if transmitters only dis-

tribute power to the userk ; andT = 1/K
∑K

k=1
Tk/T

max
k , is

the normalized throughput per communication pair. The physi-
cal meaning ofξ is the normalized variance of SUs throughput
compared with that of the single-user case. So,ξ provides a pos-
sible definition to measure the fairness in CRNs. Therefore,if
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ξ is higher, then the throughput sharing among the SUs will be
more fair.

B.1 Policy 1

In the policy, we present a pricing punishment parameter set-
ting based on their generated interference (SINR),λk can be
denoted as

λk =
γk

∑K
k=1 γk

. (13)

From (13), we can see that the SU who with higher SINR (bet-
ter channel condition) after each one receives their maximized
utility should be distributed with lower transmission power by
setting higher pricing punishment. In contrast, the SU with
lower SINR (worse channel condition) is encouraged to trans-
mit with higher power by setting lower pricing punishment. The
punishment parameter should be strictly charged accordingto
the SINR value to discourage SUs who have high SINR and
interference. So the effective pricing punishment parameter set-
ting can confine selfish behaviors who want to increase their
transmission power level. The SUs who are charged high prices
will rationally reduce their transmission power in order tomaxi-
mize their utility. Hence, all SUs have fair opportunities to trans-
mit with similar throughput level and the throughput fairness can
implicitly be achieved in this context.

B.2 Policy 2

In this policy, the adaptive pricing punishment parameterλk

as follows

λk =
1/γk

∑K
k=1(1/γk)

. (14)

The pricing policy presented in this system is similar to the
one presented in [5], where the pricing function encourages
users transmitting at high power to increase their power levels
continuously until NE is reached when all SUs ensure the mini-
mum QoS requirement (minimum SINR requirement). In other
words, the SU with higher SINR (good channel condition) is en-
couraged to transmit with more power by setting lower pricing
punishment. In contract, the SU with lower SINR (bad channel
condition) is forced to transmit with lower power, so they will
be set higher pricing punishment.

B.3 Policy 3

In this policy, we propose a new pricing scheme, which de-
pends on the distances from the SUs to the SBS. The pricing
punishment parameterλk can be defined as

λk =
1/dk

∑K
k=1(1/dk)

(15)

wheredk denotes the distance between thekth SU and the SBS.
In the CRN, the SU whose node locates further away from the
SBS than other SUs may suffer more environmental effect, such
as fading, so the SU is encouraged to be more transmission
power to satisfy their minimum SINR requirement by setting
lower pricing punishment. In contract, the SU who places closer
to the SBS is forced to distribute with less transmission power
level by setting higher pricing punishment.

B.4 Policy 4

According to the relevant discussion of thePolicy 3, in this
policy, we set the pricing punishment parameter as follows

λk =
dk

∑K
k=1 dk

. (16)

From (16), we observes that the SU who places closer to the
SBS is encouraged to distribute with more transmission power
by setting lower pricing punishment. In contrast, the SU who
locates further away from the SBS than other SUs is forced to
transmit with lower power, so the SU will be set higher pricing
punishment. From the above discussion of the pricing punish-
ment setting policies, it is obvious that thePolicy 1 considers
the fairness among SUs more than others’, and the performance
comparison certification will be presented in Section V-B. Be-
cause the SU with higher SINR situation is forced to reduce their
transmission power level by setting higher pricing punishment,
so it can reduce the interference to other SUs. At the same, the
SU who with lower SINR is engorged to be higher transmission
power level by setting lower pricing punishment, so it can in-
crease the SU’ SINR after the process. In contract, thePolicy 2
andPolicy 4 reveal that the SU who with good transmission en-
vironment (high SINR or close distance) is encouraged to trans-
mit higher power to improve their throughput by ignoring casing
high interference to other SUs who have bad transmission envi-
ronment (low SINR or far distance). So, those two policies may
improve the total throughput, but throughput fairness is ignored
among SUs.

C. Existence of NE

According to [26], all of the participants in the utility function
should satisfy the following two conditions can be a supermod-
ular game.

1) All the game players’ strategy space is tight sets.
2) ∂2U∗

k(SINR)/∂pk∂pi ≥ 0, ∀k 6= i ∈ K.
According to the theory of the Topkis fixed point theorem

[26], all supermodular games have at least a NE point. It is ob-
vious that our proposed NPGP algorithm satisfies the first con-
dition of a supermodular game because of each SU’s strategy
spacePk ∈ [pmin, pmax]. In addition, the scheme is similar to a
study [26], where the authors proved the advanced method could
improve the Pareto dominance. So, our scheme is a supermodu-
lar game if we prove the scheme satisfies the second condition.
And we take thePolicy 1 as an example to prove our scheme is
a supermodular game.

The mixed second-order partial derivatives of the utility func-
tion can be written as

∂2U∗
k

∂pk∂pi
=

γkLR

Mp2k

∂2f3(γk)

∂γ2
k

∂γk
∂pi

+
2µγkhi

pthk

(

∑K
i=1,i6=k hipi + σ2

)2

−
∂γk
∂pi

2µ

pthk

(

∑K
i=1,i6=k hipi + σ2

)2 .

(17)
The first-order derivative ofγk with respect topi can be writ-

ten as
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∂γk
∂pi

= −G
hkpkhi

(
∑K

i=1,i6=k hipi + σ2)2
< 0 (18)

The second-order derivative of the efficiency functionf3(γk)
with respect toγk has the form

∂2f3(γk)

∂γ2
k

=
eγ

min

k
−γk(eγ

min

k
−γk − 1)

(1 + eγ
min

k
−γk)3

< 0. (19)

Substituting(1), (18), and(19) into (17), we can get the in-
equality∂2U∗

k(SINR)/∂pk∂pi ≥ 0. Hence, based on the afore-
mentioned definition, the proposed power control game is a su-
permodular game. So the NPGP model at least has a reasonable
NE point.

IV. ROBUST POWER CONTROL FOR THE PROPOSED
MODEL

In practical implementations, the important concern in wire-
less systems is the estimation of the time-varying channel condi-
tions which occur due to mobility and/or changing environment,
so channel information can hardly be known precisely a priori.
In the paper, all SUs have the ability to estimate the environ-
mental shadow fading situation to a certain extent, the linkgain
of kth SU is modified as [27]

h′
k = wkd

−4
k (20)

wherewk means the shadow fading factor ofkth SU. Then, the
SINR forkth SU is modified as

γ′
k(pk) =

Gh′
kpk

∑K
i=1,i6=k h

′
ipi + σ2

, k = 1, 2, · · ·,K. (21)

Due to the estimation error of the shadow fading effect, the
design of an optimal power control scheme is challenging but
is definitely required for commercial implementation requiring
SINR information as well as being robust to uncertainty when
partial SINR information is available to the transmitter. In addi-
tion, the NE point is hard to achieve when the accuracy of SINR
value can’t be ensured.

In this section, we take the novel pricing punishment setting
strategyPolicy 1 as an example into the analysis (The perfor-
mance certification whyPolicy 1 is the best strategy shown in
Section V). Motivated by the sliding mode theory [28], the slid-
ing model controller makes the transmission power controller
robust to modeling errors and unknown disturbances and guar-
antees the desired QoS of SUs through the power control pro-
cess. Therefore, this section presents an iteration algorithm for
NPGP scheme to control the total transmission power with the
sliding model help, in order to guarantee the minimum SINR re-
quirements among all SUs and ensure NE point in opportunistic
available SINR information.

We assume the set of power control strategies of thekth SU:
pk = [pk,min, pk,max], and set an infinitely small quantityε(ε >
0). So the power control algorithm based on iteration algorithm
with the sliding model as follows.
• Step 1. Setn = 0, and input the initial transmission power

arrayP(n) = [p1(n), p2(n), · · ·, pK(n)].

• Step 2. Thenn = n + 1, update the value ofγ′
k according

to (21) and set the punishment price for thekth SU based on
(13).

• Step 3. Use the sliding model to make the transmission power
controller robust to the uncertainty SINR information and
guarantee all SUs’ minimum QoS requirement.

• Step 3.1. Calculate the sliding surfaceSk and the Lyapunov
functionVk [29] for kth SU as follows

Sk(n) = γ′
k − γmin

k , Vk(n) =
1

2
S2
k(n), k ∈ K. (22)

• Step 3.2. Calculate the following equation

Vk(n) = γ′
k(n)(γ

′
k(n)− γk), k ∈ K. (23)

whereγ′
k(n) andVk(n) denote the time derivative ofγ′

k(n)

andk. If Vk(n) < 0 , then the sliding surfaceSk(n) is glob-
ally asymptotically stable (see, for example, [29]) meaning
the system guarantees QoS requirement forkth SU.

• Step3.3. EnsureVk(n) < 0 using the sliding model [29],
obtaining the suitable power interval ofkth SU: p′k(n) =
[p′k,min, p

′
k,max].

• Step 4. According to each SU suitable power interval power
based on the step 3, obtain the transmission power arrayP′(n)
for all SUs through NPGP scheme.

• Step 5. If all SUs satisfy with the following condition:
|γ′

k(n) − γ′
k(n − 1)| < ε, then stop the algorithm, the ob-

tained transmission power arrayP′(n) is the optimal power
control array for SUs. Else, go back to step 2.
In addition, the convergence and computational simulation

time will be discussed in subsection V-B. The flow chart illus-
trating the proposed scheme (called R-NPGP) is shown in Fig.3.
According to the forward proved progress of the above descrip-
tion, the algorithm can get the final NE point, and obtain the final
optimal power control arrayP′(n) with the uncertainty SINR in-
formation. Also, the system guarantees SUs’ QoS requirement
and ensures fairness among all SUs.

V. SIMULATION RESULTS

We consider a CRN with the cell radius of 1 km. The SBS
is placed at the centre of the cell where SUs are uniformly dis-
tributed around the SBS. The distance between the SUs and the
SBS is chosen arbitrarily within(0, 1) km. The parametersµ =
50, 000, processing gainG = 100, bit rateR = 10, 000 bit/s,
total number of bitsM = 80 bits, number of information bits
L = 64 bit, each SU deploys an isotropic transmitter with the
same maximum power ofpmax = 20 mW, andε = 10−2.is
assumed to be unity for all users. The background noise is as-
sumed to be white Gaussian noise ofδ2 ∼ N(0, 10−12).

A. The Enhancement of Proposed Iteration Algorithm Based
Policy 1

We take thePolicy 1 as an example to prove the effectiveness
and superiority of the proposed iteration algorithm with sliding
model for power control game when we set the number of SUs
K = 3 in this chapter. Fig. 4(a), (b), and (c) depict the trans-
mission power level updating, SINR variety among three SUs,
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Fig. 3. Flowchart illustrating the R-NPGP scheme.

and fairness increase versus the numbers of iterations curves for
the proposed algorithm. In more simulations, we find that after
four to five iterations, the algorithm can converge. This means
the convergence rate of our algorithm is fast and suitable for the
real-time power control in CRNs.

Fig. 4(a) and (b) illustrate that updating the punishment price
weights (see (13)) subsidizes the SU who generates bad channel
condition (lower SINR) with higher transmission power level
by setting lower pricing punishment. For example, the SU3 with
lower SINR is encouraged to transmit with higher power by set-
ting lower pricing punishment, SU1 and SU2 with higher SINR
are forced to transmit with lower power. Five iterative processes
are experienced to approximately reach the SINR at the same
level. In addition, we observe that the fairness is enhancedin the
system with more iteration (less than five iterations), shown in
the Fig. 4(c), it indicates that the iteration algorithm with sliding
model can guarantee all SUs’ minimum QoS requirement and
increase the throughput fairness among SUs.

B. The Performance Comparison of Our Four Proposed Poli-
cies

We now investigate the corresponding total throughput and
the fairness issue among SUs for different number of SUs for
the four proposed policies. The results are presented in Fig. 5,
where the figures show that when the SU with better transmis-
sion environment (higher SINR, see thePolicy 2) is encouraged
to set higher transmission power level, a higher total throughput
is attained but the throughput unfairness becomes more severe
when the network grows larger. On the other hand, although
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Fig. 4. Convergence of: (a) Transmission power levels, (b) SINR updat-
ing, and (c) fairness increase for three SUs.

fairness can always be ensured in the range of the number of
SUs, however, this scheme (Policy 3) achieves the worst total
throughput as compared with thePolicy 1 andPolicy 2. Com-
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Fig. 5. Total throughput and fairness comparison with respect to different
number of SUs.

paring thePolicy 1 with Policy 2, the fairness can be guaranteed
in larger networks with a slight reduction in the throughputof
the Policy 1, and the throughput fairness thePolicy 2 suffers
more serious with the increase of SUs, so we select thePolicy 1
as the novel pricing scheme. In sort, it observes that thePolicy 1
is novel scheme for the power control game algorithm in term
of total throughput and throughput fairness among SUs.

In order to prove that thePolicy 1 is a novel scheme further,
the total power and secondary utility against the number of SUs
are illustrated in Fig. 6. It can be seen that the total transmission
power rises with the increasing of the number of SUs for all the
algorithms. However, it observes from Fig. 6(a) that the perfor-
mance gap between thePolicy 1 and other policies is expanded
with the rise of the number of SUs. Because we design an effec-
tive pricing function to confine the pricing punishment parame-
ter, the SU with higher SINR is forced to reduce the transmis-
sion power, and the SU who needs more transmission power to
guarantee the minimum QoS requirement is encouraged to set
more transmission power level, so SUs can reasonably assign
their own power (seePolicy 1).
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Fig. 8. Total power and secondary utility comparison for the three
schemes.

Table 1. Comparison of simulation time.

Algorithms R-NPGP NPGP-ESIA NGP-MSFLA

Simulation time (s) 2.26 7.37 5.18

From the previous analysis, the utility represents the number
of information bits by successful SUs transmissions per Joule of
energy expended. It can be seen from Fig. 6(b) that, with the
increase of the number of SUs, the total utility is increasedfor
all the algorithms. The secondary total utility of thePolicy 1 is
larger than other policies. Since the energy of mobile terminal is
finite in practice, it is of great importance to enhance the energy-
efficiency. Based on the observation from Fig. 6(b), it can be
concluded that thePolicy 1 improves the energy-efficiency sub-
stantially.

C. The Performance Comparison of the Three Game Algo-
rithms

Fig. 7 describes the convergence performance and simulation
time comparison of simulation time the three algorithms when
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Fig. 9. Total power and secondary utility comparison for the three
schemes.

K = 10. Without loss of generality, we suppose that all the SUs
solve the optimal power with the same process. It can be seen
from Fig. 7 that ESIA takes less than 6 iterations to converge
to the steady state, and other two algorithms need 8 iterations
which is minor more iterations process than ESIA performance.
However, in Table 1, it is quite obvious that R-NPGP saves much
simulation time than other two algorithms, which means thatour
proposed scheme reduces the computational complexity. This is
because other two algorithms used artificial algorithms to search
for the optimal power control strategies without considering the
algorithm complexity. In addition, R-NPGP reduces total SUs
transmission power compared with other methods.

In this section, we will compare the performance of the
proposed R-NPGP scheme based on thePolicy 1 with NPG-
MSFLA [12] and NPGP-ESIA [15].

Fig. 8 shows the total throughput performance and fairness
comparison with respect to different number of SUs for differ-
ent algorithms. It can be seen that the performance of R-NPGP
is better than NPGP-ESLA and NPG-MSFLA. In addition, the
performance gap between R-NPGP and the other algorithms in-
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crease when the network grows larger, by which it can be con-
cluded that R-NPGP is more suitable for applying in larger net-
works. Because R-NPGP scheme sets the adaptive punishment
parameter among all served SUs based on the SINR informa-
tion, and using a sliding model to guarantee the minimum QoS
requirement among SUs and takes an available iteration algo-
rithm to achieve NE. Therefore, our proposed scheme can im-
prove the total throughput and guarantee fairness among SUs.

Fig. 9 shows the total power and secondary utility comparison
with the increase of the number of SUs for the three schemes.
In this paper, we design an adaptive effective pricing function to
confine selfish behaviors, where the SUs need to pay the price
for transmission power based on their SINR value. Therefore,
the pricing strategy prevents the blind increase power frommak-
ing serious interference to other SUs, and the total transmission
power is naturally reduced. In addition, the total utility of R-
NPGP is also larger than other two algorithms with the increase
of the number of SUs. It can be concluded from Fig. 9 that com-
pared with NPGP-ESLA and NPG-MSFLA, R-NPGP can ob-
tain a significant improvement on secondary utility and reduces
the total transmission power.

VI. CONCLUSION

In this paper, we propose a novel price-based power control
algorithm in a CRN. This effective utility function considers the
throughput fairness among SUs, where the SUs’ SINR informa-
tion is used as reference for the pricing punishment parameter
setting. Moreover, due to the effect of uncertainty fading envi-
ronment, the system is unable to get the link gain coefficient
to control SUs’ transmission power accurately. Therefore,we
presented an alternative robust power control scheme with slid-
ing model to guarantee SUs’ QoS requirement and ensure the
existence of NE. Simulation results show that R-NPGP based
on SUs’ SINR as price punishment reference can improve total
throughput, ensure fairness and reduce total transmissionpower
in CRNs.
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