• Title/Summary/Keyword: QR Decomposition Method

Search Result 32, Processing Time 0.023 seconds

Study on the Observability of a Calibration System for a Parallel Tilting Table with Measuerment Operator (측정연산자에 의한 병렬기구 틸팅 테이블의 관측성에 관한 연구)

  • Park Kun Woo;Lee Min Ki;Kim Tae Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.795-803
    • /
    • 2005
  • This paper studies the observability of calibration system with a measurement operator. The calibration system needs a simple digital indicator to measure the mobile table movements with respect to the MC coordinate. However, it yields the concern about the poor parameter observability due to measuring only a part of the movements. We uses the QR-decomposition to find the optimal calibration configurations maximizing the linear independence of rows of an observation matrix. The number of identifiable parameter is examined by the rank of the observation matrix, which represents the parameter observability. The method is applied to a 6-axis MC with parallel tilting table and the calibration results are presented. These results verify that all necessary kinematic parameters are observable and the calibration system has robustness to the noise using optimal calibration configurations.

Study on the Observability of Calibration System with a Constraint Oprerator (구속연산자에 의한 보정 시스템의 관측성에 관한 연구)

  • Lee, Min-Ki;Kim, Tae-Sung;Park, Kun-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.647-655
    • /
    • 2003
  • This paper studies the observability of calibration system with a constraint movement by a constraint operator. The calibration system with the constraint movement need only simple sensing device to check whether the constraint movements are completed within an established range. However, it yields the concern about the poor parameter observability due to the constraint movements. This paper uses the QR-decomposition to find the optimal calibration configurations maximizing the linear independence of rows of a observation matrix. The number of identifiable parameters are examined by the rank of the observation matrix, which represents the parameter observability. The method is applied to a parallel typed machining center and the calibration results are presented. These results verify that the calibration system with low-cost indicators and simple planar table is accurate as well as reliable.

Soft Detection using QR Decomposition for Coded MIMO System (부호화된 MIMO 시스템에서 QR 분해를 이용한 효율적인 연판정 검출)

  • Zhang, Meixiang;Kim, Soo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.535-544
    • /
    • 2012
  • Multi-Input Multi-Output (MIMO) transmission is now considered as one of essential techniques enabling high rate data transmissions in wireless communication systems. In addition, severe channel impairments in wireless systems should be compensated by using highly efficient forward error correction (FEC) codes. Turbo codes or low density parity check (LDPC) codes, using iterative decoding with soft decision detection information (SDDI), are the most common examples. The excellent performance of these codes should be conditioned on accurate estimation of SDDI from the MIMO detection process. In this paper, we propose a soft MIMO detection scheme using QR decomposition of channel matrices as an efficient means to provide accurate SDDI to the iterative decoder. The proposed method employed a two sequential soft MIMO detection process in order to reduce computational complexity. Compared to the soft ZF method calculating the direct inverse of the channel matrix, the complexity of the proposed method can be further reduced as the number of antennas is increased, without any performance degradation.

Vibration Analysis of a Bogie Using Linearized Dynamic Equations of a Multibody System (다물체계의 선형 동역학식을 이용한 대차의 진동 해석)

  • Kang, Juseok
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.5
    • /
    • pp.321-327
    • /
    • 2014
  • In this paper, linear dynamic equations are derived from nonlinear dynamic equations of constrained multibody systems using the QR decomposition method. The derived linear equations are applied to a railway vehicle bogie. The vibration characteristics of the railway vehicle are investigated by calculating the natural mode and transfer function of the bogie frame in relation to rail-roughness input. The main modes of the bogie were found below 35Hz, and the local modes above 198Hz. The magnitude of the vertical transfer function varied with the forward velocity due to vertical and pitch modes, which were influenced by the forward velocity. The magnitude of the lateral transfer function was negligibly small, and the mode in the longitudinal direction was excited for longitudinal transfer function regardless of the forward velocity.

A Reduced Complexity QRM-MLD for Spatially Multiplexed MIMO Systems (공간다중화 방식을 사용하는 다중 안테나 시스템을 위한 감소된 계산량의 QRM-MLD 신호검출기법)

  • Im, Tae-Ho;Kim, Jae-Kwon;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1C
    • /
    • pp.43-50
    • /
    • 2007
  • In the paper, we address QRM-MLD (Maximum Likelihood Detection with QR Decomposition and M-algorithm) signal detection method for spatially multiplexed MIMO (Multiple Input Multiple Output) systems. Recently, the QRM-MLD signal detection method which can achieve 1Gbps transmission speed for next generation mobile communication was implemented in a MIMO testbed for the mobile moving at a pedestrian speed. In the paper, we propose a novel signal detection method 'reduced complexity QRM-MLD' that achieves identical error performance as the QRM-MLD while reducing the computational complexity significantly. We rigorously compare the two detection methods in terms of computational complexity to show the complexity reduction of the proposed method. We also perform a set of computer simulations to demonstrate that two detection methods achieve identical error performance.

An Improved Ordering Method for MIMO Signal Detection Using QR Decomposition and Successive Interference Cancellation (QR 분해 및 순차적 간섭제거 기반의 MIMO 신호검출 기법을 위한 향상된 순서화 방법)

  • Bak, Sang-Hyun;Kim, Jae-Kwon;Yang, Won-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10C
    • /
    • pp.1010-1015
    • /
    • 2009
  • In this paper, we propose a novel detection ordering technique for MIMO signal detection methods based on QR decomposition and successive interference cancellation (SIC). Recently, new signal detection methods for spatially multiplexed (SM) MIMO systems were proposed, where all the constellation points are tried as the first layer symbol, and the remaining layer symbols are estimated via SIC, producing candidate vectors. Finally, the ML metric values are calculated for the candidate vectors, that are again used to select the best symbol vector. It was also shown that the ordering method in the conventional V-BLAST is not suitable to these signal detection methods. In this paper, we propose a novel ordering method, and we show via computer simulations that the proposed ordering method improves the error performance.

Characteristic Analysis of Normalized D-QR-RLS Algorithm (II) (정규화된 D-QR-RLS 알고리즘의 특성 분석(II))

  • Ahn, Bong-Man;Hwang, Jee-Won;Cho, Ju-Phil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11C
    • /
    • pp.1127-1133
    • /
    • 2007
  • This paper proposes one of normalized QR-typed LMS (Least Mean Square) algorithms with computational complexity of O(N). This proposed algorithm shows the normalized property in terms of theoretical characteristics. This proposed algorithm is one of algorithms which normalize variance of input signal in terms of mean because QR-typed LMS is proportional to variance of input signal. In this paper, convergence characteristic analysis of normalized algorithm was made. Computer simulation was made by the algorithms used for echo canceller. Proposed algorithm has similar performance to theoretical value. And, we can see that proposed method shows similar one to performance of NLMS.by comparison among different algorithms.

The Segmented Polynomial Curve Fitting for Improving Non-linear Gamma Curve Algorithm (비선형 감마 곡선 알고리즘 개선을 위한 구간 분할 다항식 곡선 접합)

  • Jang, Kyoung-Hoon;Jo, Ho-Sang;Jang, Won-Woo;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.163-168
    • /
    • 2011
  • In this paper, we proposed non-linear gamma curve algorithm for gamma correction. The previous non-linear gamma curve algorithm is generated by the least square polynomial using the Gauss-Jordan inverse matrix. However, the previous algorithm has some weak points. When calculating coefficients using inverse matrix of higher degree, occurred truncation errors. Also, only if input sample points are existed regular interval on 10-bit scale, the least square polynomial is accurately works. To compensate weak-points, we calculated accurate coefficients of polynomial using eigenvalue and orthogonal value of mat11x from singular value decomposition (SVD) and QR decomposition of vandemond matrix. Also, we used input data part segmentation, then we performed polynomial curve fitting and merged curve fitting results. When compared the previous method and proposed method using the mean square error (MSE) and the standard deviation (STD), the proposed segmented polynomial curve fitting is highly accuracy that MSE under the least significant bit (LSB) error range is approximately $10^{-9}$ and STD is about $10^{-5}$.

Application SVD-Least Square Algorithm for solving astronomical ship position basing on circle of equal altitude equation

  • Nguyen, Van Suong;Im, Namkyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.130-132
    • /
    • 2013
  • This paper presents an improvement for calculating method of astronomical vessel position with circle of equal altitude equation based on using a virtual object in sun and two stars observation. In addition, to enhance the accuracy of ship position achieved from solving linear matrix system, and surmount the disadvantages on rank deficient matrices situation, the authors used singular value decomposition (SVD) in least square method instead of normal equation and QR decomposition, so, the solution of matrix system will be available in all situation. As proposal algorithm, astronomical ship position will give more accuracy than previous methods.

  • PDF

A Study On The Eigen-properties of A 2-D Square Waveguide by the Krylov-Schur Iteration Method (Krylov-Schur 순환법에 의한 2차원 사각도파관에서의 고유치 문제에 관한 연구)

  • Kim, Yeong Min;Kim, Dongchool;Lim, Jong Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.28-35
    • /
    • 2013
  • The Krylov-Schur algorithm has been applied to reveal the eigen-properties of the wave guide having the square cross section. The eigen-matrix equation has been constructed from FEM with the basis function of the tangential edge-vectors of the triangular element. This equation has been treated firstly with Arnoldi decomposition to obtain a upper Hessenberg matrix. The QR algorithm has been carried out to transform it into Schur form. The several eigen values satisfying the convergent condition have appeared in the diagonal components. The eigen-modes for them have been calculated from the inverse iteration method. The wanted eigen-pairs have been reordered in the leading principle sub-matrix of the Schur matrix. This sub-matrix has been deflated from the eigen-matrix equation for the subsequent search of other eigen-pairs. These processes have been conducted several times repeatedly. As a result, a few primary eigen-pairs of TE and TM modes have been obtained with sufficient reliability.