• Title/Summary/Keyword: Q polynomials

Search Result 206, Processing Time 0.017 seconds

VARIOUS PROPERTIES OF HIGH-ORDER (p, q)-POLY-TANGENT POLYNOMIALS AND THE PHENOMENA OF THEIR ROOTS

  • JUNG YOOG KANG
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.2
    • /
    • pp.457-469
    • /
    • 2024
  • In this paper, we construct higher-order (p, q)-poly-tangent numbers and polynomials and give several properties, including addition formula and multiplication formula. Finally, we explore the distribution of roots of higher-order (p, q)-poly-tangent polynomials.

A New Family of q-analogue of Genocchi Numbers and Polynomials of Higher Order

  • Araci, Serkan;Acikgoz, Mehmet;Seo, Jong Jin
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.1
    • /
    • pp.131-141
    • /
    • 2014
  • In the present paper, we introduce the new generalization of q-Genocchi polynomials and numbers of higher order. Also, we give some interesting identities. Finally, by applying q-Mellin transformation to the generating function for q-Genocchi polynomials of higher order put we define novel q-Hurwitz-Zeta type function which is an interpolation for this polynomials at negative integers.

FULLY MODIFIED (p, q)-POLY-TANGENT POLYNOMIALS WITH TWO VARIABLES

  • N.S. JUNG;C.S. RYOO
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.4
    • /
    • pp.753-763
    • /
    • 2023
  • In this paper, we introduce a fully modified (p, q)-poly tangent polynomials and numbers of the first type. We investigate analytic properties that is related with (p, q)-Gaussian binomial coefficients. We also define (p, q)-Stirling numbers of the second kind and fully modified (p, q)-poly tangent polynomials and numbers of the first type with two variables. Moreover, we derive some identities are concerned with the modified tangent polynomials and the (p, q)-Stirling numbers.

A NOTE ON THE WEIGHTED q-GENOCCHI NUMBERS AND POLYNOMIALS WITH THEIR INTERPOLATION FUNCTION

  • Arac, Serkan;Ackgoz, Mehmet;Seo, Jong-Jin
    • Honam Mathematical Journal
    • /
    • v.34 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • Recently, T. Kim has introduced and analysed the q-Bernoulli numbers and polynomials with weight ${\alpha}$ cf.[7]. By the same motivaton, we also give some interesting properties of the q-Genocchi numbers and polynomials with weight ${\alpha}$. Also, we derive the q-extensions of zeta type functions with weight from the Mellin transformation of this generating function which interpolates the q-Genocchi polynomials with weight at negative integers.

ANALYTIC CONTINUATION OF WEIGHTED q-GENOCCHI NUMBERS AND POLYNOMIALS

  • Araci, Serkan;Acikgoz, Mehmet;Gursul, Aynur
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.457-462
    • /
    • 2013
  • In the present paper, we analyse analytic continuation of weighted $q$-Genocchi numbers and polynomials. A novel formula for weighted $q$-Genocchi-zeta function $\tilde{\zeta}_{G,q}(s{\mid}{\alpha})$ in terms of nested series of $\tilde{\zeta}_{G,q}(n{\mid}{\alpha})$ is derived. Moreover, we introduce a novel concept of dynamics of the zeros of analytically continued weighted $q$-Genocchi polynomials.

IDENTITIES AND RELATIONS ON THE q-APOSTOL TYPE FROBENIUS-EULER NUMBERS AND POLYNOMIALS

  • Kucukoglu, Irem;Simsek, Yilmaz
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.265-284
    • /
    • 2019
  • The main purpose of this paper is to investigate the q-Apostol type Frobenius-Euler numbers and polynomials. By using generating functions for these numbers and polynomials, we derive some alternative summation formulas including powers of consecutive q-integers. By using infinite series representation for q-Apostol type Frobenius-Euler numbers and polynomials including their interpolation functions, we not only give some identities and relations for these numbers and polynomials, but also define generating functions for new numbers and polynomials. Further we give remarks and observations on generating functions for these new numbers and polynomials. By using these generating functions, we derive recurrence relations and finite sums related to these numbers and polynomials. Moreover, by applying higher-order derivative to these generating functions, we derive some new formulas including the Hurwitz-Lerch zeta function, the Apostol-Bernoulli numbers and the Apostol-Euler numbers. Finally, for an application of the generating functions, we derive a multiplication formula, which is very important property in the theories of normalized polynomials and Dedekind type sums.