ANALYTIC CONTINUATION OF WEIGHTED q-GENOCCHI NUMBERS AND POLYNOMIALS

Serkan Araci, Mehmet Acikgoz, and Aynur Gürsul

Abstract

In the present paper, we analyse analytic continuation of weighted q-Genocchi numbers and polynomials. A novel formula for weighted q-Genocchi-zeta function $\widetilde{\zeta}_{G, q}(s \mid \alpha)$ in terms of nested series of $\widetilde{\zeta}_{G, q}(n \mid \alpha)$ is derived. Moreover, we introduce a novel concept of dynamics of the zeros of analytically continued weighted q-Genocchi polynomials.

1. Introduction

In this paper, we use notations like \mathbb{N}, \mathbb{R} and \mathbb{C}, where \mathbb{N} denotes the set of natural numbers, \mathbb{R} denotes the field of real numbers and \mathbb{C} also denotes the set of complex numbers. When one talks of q-extension, q is variously considered as an indeterminate, a complex number or a p-adic number.

Throughout this work, we will assume that $q \in \mathbb{C}$ with $|q|<1$. The q-integer symbol $[x: q]$ denotes as

$$
[x: q]=\frac{q^{x}-1}{q-1}(\text { see }[1-10])
$$

Firstly, analytic continuation of q-Euler numbers and polynomials was investigated by Kim in [8]. He gave a new concept of dynamics of the zeros of analytically continued q-Euler polynomials. Actually, we are motivated from his excellent paper which is "Analytic continuation of q-Euler numbers and polynomials, Applied Mathematics Letters 21 (2008), 1320-1323". By the same motivation, we also procure the analytic continuation of weighted q-Genocchi numbers and polynomials as parallel to his article. However, we give some interesting identities by using generating function of weighted q-Genocchi polynomials.

[^0]
2. Some properties of the weighted q-Genocchi numbers and polynomials

For $\alpha \in \mathbb{N} \cup\{0\}$, the weighted q-Genocchi polynomials are defined by means of the following generating function:

For $x \in \mathbb{C}$,

$$
\begin{equation*}
\sum_{n=0}^{\infty} \widetilde{G}_{n, q}(x \mid \alpha) \frac{t^{n}}{n!}=[2: q] t \sum_{n=0}^{\infty}(-1)^{n} q^{n} e^{t\left[n+x: q^{\alpha}\right]} . \tag{2.1}
\end{equation*}
$$

In the special case, $x=0$ in (2.1), $\widetilde{G}_{n, q}(0 \mid \alpha):=\widetilde{G}_{n, q}(\alpha)$ are called the weighted q-Genocchi numbers. By (2.1), we readily derive the following:

$$
\begin{equation*}
\frac{\widetilde{G}_{n+1, q}(x \mid \alpha)}{n+1}=\frac{[2: q]}{[\alpha: q]^{n}(1-q)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \frac{q^{\alpha l x}}{1+q^{\alpha l+1}} \tag{2.2}
\end{equation*}
$$

where $\binom{n}{l}$ is the binomial coefficient. By expression (2.1), we see that

$$
\begin{equation*}
\widetilde{G}_{n, q}(x \mid \alpha)=q^{-\alpha x}\left(q^{\alpha x} \widetilde{G}_{q}(\alpha)+\left[x: q^{\alpha}\right]\right)^{n} \tag{2.3}
\end{equation*}
$$

with the usual convention of replacing $\left(\widetilde{G}_{q}(\alpha)\right)^{n}$ by $\widetilde{G}_{n, q}(\alpha)$ is used (for details, see [1], [2]).

Let $\widetilde{T}_{q}^{(\alpha)}(x, t)$ be the generating function of weighted q-Genocchi polynomials as follows:

$$
\begin{equation*}
\widetilde{T}_{q}^{(\alpha)}(x, t)=\sum_{n=0}^{\infty} \widetilde{G}_{n, q}(x \mid \alpha) \frac{t^{n}}{n!} . \tag{2.4}
\end{equation*}
$$

Then, we easily notice that

$$
\begin{equation*}
\widetilde{T}_{q}^{(\alpha)}(x, t)=[2: q] t \sum_{n=0}^{\infty}(-1)^{n} q^{n} e^{t\left[n+x: q^{\alpha}\right]} . \tag{2.5}
\end{equation*}
$$

From expressions (2.4) and (2.5), we procure the followings:
For k (=even) and $n, \alpha \in \mathbb{N} \cup\{0\}$, we have

$$
\begin{equation*}
q^{k} \frac{\widetilde{G}_{n+1, q}(k \mid \alpha)}{n+1}-\frac{\widetilde{G}_{n+1, q}(\alpha)}{n+1}=[2: q] \sum_{l=0}^{k-1}(-1)^{l+1} q^{l}\left[l: q^{\alpha}\right]^{n} \tag{2.6}
\end{equation*}
$$

For $k(=$ odd $)$ and $n, \alpha \in \mathbb{N} \cup\{0\}$, we have

$$
\begin{equation*}
q^{k} \frac{\widetilde{G}_{n+1, q}(k \mid \alpha)}{n+1}+\frac{\widetilde{G}_{n+1, q}(\alpha)}{n+1}=[2: q] \sum_{l=0}^{k-1}(-1)^{l} q^{l}\left[l: q^{\alpha}\right]^{n} \tag{2.7}
\end{equation*}
$$

Via Eq.(2.5), we easily obtain the following:

$$
\begin{equation*}
\widetilde{G}_{n, q}(x \mid \alpha)=q^{-\alpha x} \sum_{j=0}^{n}\binom{n}{j} q^{\alpha j x} \widetilde{G}_{j, q}(\alpha)\left[x: q^{\alpha}\right]^{n-j} \tag{2.8}
\end{equation*}
$$

From (2.6)-(2.8), we get the following:
(2.9)

$$
\begin{aligned}
& {[2: q] \sum_{l=0}^{k-1}(-1)^{l+1} q^{l}\left[l: q^{\alpha}\right]^{n} } \\
= & \left(q^{k(1+\alpha n)}-1\right) \frac{\widetilde{G}_{n+1, q}(\alpha)}{n+1}+\frac{q^{(1-\alpha) k}}{n+1} \sum_{j=0}^{n}\binom{n+1}{j} q^{\alpha j k} \widetilde{G}_{j, q}(\alpha)\left[k: q^{\alpha}\right]^{n+1-j},
\end{aligned}
$$

where k is an even positive integer. If k is an odd positive integer. Then, we can derive the following equality:
(2.10)

$$
\begin{aligned}
& {[2: q] \sum_{l=0}^{k-1}(-1)^{l} q^{l}\left[l: q^{\alpha}\right]^{n} } \\
= & \left(q^{k(1+\alpha n)}+1\right) \frac{\widetilde{G}_{n+1, q}(\alpha)}{n+1}+\frac{q^{(1-\alpha) k}}{n+1} \sum_{j=0}^{n}\binom{n+1}{j} q^{\alpha j k} \widetilde{G}_{j, q}(\alpha)\left[k: q^{\alpha}\right]^{n+1-j} .
\end{aligned}
$$

3. On the weighted q-Genocchi-zeta function

The famous Genocchi polynomials are defined by

$$
\begin{equation*}
\frac{2 t}{e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} G_{n}(x) \frac{t^{n}}{n!},|t|<\pi(\text { cf. }[6]) \tag{3.1}
\end{equation*}
$$

For $s \in \mathbb{C}, x \in \mathbb{R}$ with $0 \leq x<1$, Genocchi-Zeta function is given by

$$
\begin{equation*}
\zeta_{G}(s, x)=2 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n+x)^{s}} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\zeta_{G}(s)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{s}} \tag{3.3}
\end{equation*}
$$

By (3.1), (3.2) and (3.3), Genocchi-zeta functions are related to the Genocchi numbers as follows:

$$
\zeta_{G}(-n)=\frac{G_{n+1}}{n+1} .
$$

Moreover, it is simple to see

$$
\zeta_{G}(-n, x)=\frac{G_{n+1}(x)}{n+1}
$$

The weighted q-Genocchi Hurwitz-zeta type function is defined by

$$
\widetilde{\zeta}_{G, q}(s, x \mid \alpha)=[2: q] \sum_{m=0}^{\infty} \frac{(-1)^{m} q^{m}}{\left[m+x: q^{\alpha}\right]^{s}} .
$$

Similarly, weighted q-Genocchi-zeta function is given by

$$
\widetilde{\zeta}_{G, q}(s \mid \alpha)=[2: q] \sum_{m=1}^{\infty} \frac{(-1)^{m} q^{m}}{\left[m: q^{\alpha}\right]^{s}}
$$

For $n, \alpha \in \mathbb{N} \cup\{0\}$, we have

$$
\widetilde{\zeta}_{G, q}(-n \mid \alpha)=\frac{\widetilde{G}_{n+1, q}(\alpha)}{n+1}
$$

We now consider the function $\widetilde{G}_{q}(n: \alpha)$ as the analytic continuation of weighted q-Genocchi numbers. All the weighted q-Genocchi numbers agree with $\widetilde{G}_{q}(n: \alpha)$, the analytic continuation of weighted q-Genocchi numbers evaluated at n. For $n \geq 0, \widetilde{G}_{q}(n: \alpha)=\widetilde{G}_{n, q}(\alpha)$.

We can now state $\widetilde{G}_{q}^{\prime}(s: \alpha)$ in terms of $\widetilde{\zeta}_{G, q}(s \mid \alpha)$, the derivative of $\widetilde{\zeta}_{G, q}(s$: $\alpha)$

$$
\frac{\widetilde{G}_{q}(s+1: \alpha)}{s+1}=\widetilde{\zeta}_{G, q}(-s \mid \alpha), \frac{\widetilde{G}_{q}^{\prime}(s+1: \alpha)}{s+1}=\widetilde{\zeta}_{G, q}(-s \mid \alpha)
$$

For $n, \alpha \in \mathbb{N} \cup\{0\}$

$$
\frac{\widetilde{G}_{q}^{\prime}(2 n+1: \alpha)}{2 n+1}=\widetilde{\zeta}_{G, q}^{\prime}(-2 n \mid \alpha) .
$$

This is suitable for the differential of the functional equation and so supports the coherence of $\widetilde{G}_{q}(s: \alpha)$ and $\widetilde{G}_{q}^{\prime}(s: \alpha)$ with $\widetilde{G}_{n, q}(\alpha)$ and $\widetilde{\zeta}_{G, q}(s \mid \alpha)$. From the analytic continuation of weighted q-Genocchi numbers, we derive as follows:

$$
\frac{\widetilde{G}_{q}(s+1: \alpha)}{s+1}=\widetilde{\zeta}_{G, q}(-s \mid \alpha) \text { and } \frac{\widetilde{G}_{q}(-s+1: \alpha)}{-s+1}=\widetilde{\zeta}_{G, q}(s \mid \alpha)
$$

Moreover, we derive the following: For $n \in \mathbb{N}-\{1\}$

$$
\frac{\widetilde{G}_{-n+1, q}(\alpha)}{-n+1}=\frac{\widetilde{G}_{q}(-n+1: \alpha)}{-n+1}=\widetilde{\zeta}_{G, q}(n \mid \alpha)
$$

The curve $\widetilde{G}_{q}(s: a)$ review quickly the points $\widetilde{G}_{-s, q}(\alpha)$ and grows $\sim n$ asymptotically $(-n) \rightarrow-\infty$. The curve $\widetilde{G}_{q}(s: a)$ review quickly the point $\widetilde{G}_{q}(-s: a)$. Then, we procure the following:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\widetilde{G}_{q}(-n+1: \alpha)}{-n+1} & =\lim _{n \rightarrow \infty} \widetilde{\zeta}_{G, q}(n \mid \alpha) \\
& =\lim _{n \rightarrow \infty}\left([2: q] \sum_{m=1}^{\infty} \frac{(-1)^{m} q^{m}}{\left[m: q^{\alpha}\right]^{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left(-q[2: q]+[2: q] \sum_{m=2}^{\infty} \frac{(-1)^{m} q^{m}}{\left[m: q^{\alpha}\right]^{n}}\right) \\
& =-q^{2}\left[2: q^{-1}\right]
\end{aligned}
$$

From this, we easily note that

$$
\frac{\widetilde{G}_{q}(-n+1: \alpha)}{-n+1}=\widetilde{\zeta}_{G, q}(n \mid \alpha) \mapsto \frac{\widetilde{G}_{q}(-s+1: \alpha)}{-s+1}=\widetilde{\zeta}_{G, q}(s \mid \alpha)
$$

4. Analytic continuation of the weighted q-Genocchi polynomials

For coherence with the redefinition of $\widetilde{G}_{n, q}(\alpha)=\widetilde{G}_{q}(n: \alpha)$, we have

$$
\widetilde{G}_{n, q}(x \mid \alpha)=q^{-\alpha x} \sum_{k=0}^{n}\binom{n}{k} q^{\alpha k x} \widetilde{G}_{k, q}(\alpha)\left[x: q^{\alpha}\right]^{n-k}
$$

Let $\Gamma(s)$ be Euler-gamma function. Then the analytic continuation can be get as

$$
\begin{aligned}
n & \mapsto s \in \mathbb{R}, x \mapsto w \in \mathbb{C}, \\
\widetilde{G}_{n, q}(\alpha) & \mapsto \widetilde{G}_{q}(k+s-[s]: \alpha)=\widetilde{\zeta}_{G, q}(-(k+s-[s]) \mid \alpha), \\
\binom{n}{k}=\frac{\Gamma(n+1)}{\Gamma(n-k+1) \Gamma(k+1)} & \mapsto \frac{\Gamma(s+1)}{\Gamma(1+k+(s-[s])) \Gamma(1+[s]-k)} \\
\widetilde{G}_{s, q}(w \mid \alpha) & \mapsto \widetilde{G}_{q}(s, w: \alpha) \\
& =q^{-\alpha w} \sum_{k=-1}^{[s]} \frac{\Gamma(s+1) \widetilde{G}_{q}(k+(s-[s]): \alpha) q^{\alpha w(k+(s-[s]))}}{\Gamma(1+k+(s-[s])) \Gamma(1+[s]-k)}\left[w: q^{\alpha}\right]^{[s]-k} \\
& =q^{-\alpha w} \sum_{k=0}^{[s]+1} \frac{\Gamma(s+1) \widetilde{G}_{q}(-1+k+(s-[s]): \alpha) q^{\alpha w(k-1+(s-[s]))}}{\Gamma(k+(s-[s])) \Gamma(2+[s]-k)}\left[w: q^{\alpha]}[s]+1-k\right.
\end{aligned}
$$

Here $[s]$ gives the integer part of s , and so $s-[s]$ gives the fractional part.
Deformation of the curve $\widetilde{G}_{q}(1, w: \alpha)$ into the curve of $\widetilde{G}_{q}(2, w: \alpha)$ is by means of the real analytic cotinuation $\widetilde{G}_{q}(s, w: \alpha), 1 \leq s \leq 2,-0.5 \leq w \leq 0.5$.

References

[1] S. Araci, M. Acikgoz, and J. J. Seo, A study on the weighted q-Genocchi numbers and polynomials with their interpolation function, Honam Math. J. 34 (2012), no. 1, 11-18.
[2] S. Araci, D. Erdal, and J. J. Seo, A study on the fermionic p-adic q-integral representation on \mathbb{Z}_{p} associated with weighted q-Bernstein and q-Genocchi polynomials, Abstr. Appl. Anal. 2011 (2011), Article ID 649248, 10 pages.
[3] T. Kim, On explicit formulas of p-adic q-L-functions, Kyushu J. Math. 43 (1994), no. 1, 73-86.
[4] \quad, On a q-analogue of the p-adic \log gamma functions and related integrals, J. Number Theory 76 (1999), no. 2, 320-329.
[5] _, Power series and asymptotic series associated with the q-analog of the twovariable p-adic L-function, Russ. J. Math. Phys. 12 (2005), no. 2, 186-196.
[6] , On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 326 (2007), no. 2, 1458-1465.
[7] - On the analogs of Euler numbers and polynomials associated with p-adic q integral on \mathbb{Z}_{p} at $q=-1$, J. Math. Anal. Appl. 331 (2007), no. 2, 779-792.
[8], Analytic continuation of q-Euler numbers and polynomials, Appl. Math. Lett. 21 (2008), no. 12, 1320-1323.
[9] _, On p-adic interpolating function for q-Euler numbers and its derivatives, J. Math. Anal. Appl. 339 (2008), no. 1, 598-608.
[10] T. Kim, C. S. Ryoo, L. C. Jang, and S. H. Rim, Exploring the q-Riemann zeta function and q-Bernoulli polynomials, Discrete Dyn. Nat. Soc. 2005 (2005), no. 2, 171-181.

Serkan Aracl

Department of Mathematics
Faculty of Arts and Science
University of Gaziantep
27310 Gaziantep, Turkey
E-mail address: mtsrkn@hotmail.com
Mehmet Acikgoz
Department of Mathematics
Faculty of Arts and Science
University of Gaziantep
27310 Gaziantep, Turkey
E-mail address: acikgoz@gantep.edu.tr
Aynur Gürsul
Department of Mathematics
Faculty of Arts and Science
University of Gaziantep
27310 Gaziantep, Turkey
E-mail address: aynurgursul@hotmail.com

[^0]: Received October 11, 2012.
 2010 Mathematics Subject Classification. Primary 05A10, 11B65; Secondary 11B68, 11B73.

 Key words and phrases. Genocchi numbers and polynomials, q-Genocchi numbers and polynomials, weighted q-Genocchi numbers and polynomials, weighted q-Genocchi-zeta function.

