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Abstract. In this paper, we study differential equations arising from the

generating functions of (p, q)-Hermite polynomials. We use this differential
equation to give explicit identities for (p, q)-Hermite polynomials.
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1. Introduction

Special functions are functions that are used specifically in mathematical
physics or other fields of mathematics(see [1-16]). The ordinary Hermite num-
bers Hn and Hermite polynomials Hn(x) are usually defined by the generating
functions

e(2x−t)t =

∞∑
n=0

Hn(x)
tn

n!

and

e−t2 =

∞∑
n=0

Hn
tn

n!
.

Clearly, Hn = Hn(0).
We use the following notation:

[x]p,q =
px − qx

p− q
, 0 < q < p ≤ 1, (see [6, 7, 9]).
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Note that p = 1, limq→1[x]p,q = x. We recall that the (p, q)-Hermite polynomials
Hn,p,q(x) defined by the generating function

∞∑
n=0

Hn,p,q(x)
tn

n!
= e2[x]p,qt−t2 = F(t, [x]p,q). (1)

Observe that if p = 1, q → 1 , then Hn,p,q(x) → Hn(x).
Mathematicians have studied the differential equations arising from the gen-

erating functions of special numbers and polynomials(see [1, 5, 8, 10-16]). Based
on the results so far, in the present work, we can derive the differential equations
generated from the generating function of (p, q)-Hermite polynomials Hn,p,q(x).
By using the coefficients of this differential equation, we obtain explicit iden-
tities for the (p, q)-Hermite polynomials Hn,p,q(x). The rest of the paper is
organized as follows. In Section 2, we derive the differential equations generated
from the generating function of (p, q)-Hermite polynomials Hn,p,q(x). Using
the coefficients of this differential equation, we have explicit identities for the
(p, q)-Hermite polynomials Hn,p,q(x).

2. Basic properties for the (p, q)-Hermite polynomials

The generating function (1) is useful for deriving several properties of the
(p, q)-Hermite polynomials Hn,p,q(x). The following basic properties of the
(p, q)-Hermite polynomials Hn,p,q(x) are derived form (1). We, therefore, choose
to omit the details involved.

Theorem 2.1. For any positive integer n, we have

(1) Hn,p,q(x) =

n∑
k=0

(
n

k

)
2n−k[x]n−k

p,q Hk.

(2) Hn,p,q(x) = n!

[n2 ]∑
k=0

(−1)k2n−2k[x]n−2k
p,q

k!(n− 2k)!
.

(3) Hn,p,q(x) =
n∑

k=0

(
n

k

)
Hk,p,q(x)(−1)k4n−k[x]n−k

p,q .

where [ ] denotes taking the integer part.

Note that

F(t, [x]p,q) = e2[x]p,qt−t2

satisfies
∂F(t, [x]p,q)

∂t
− (2[x]p,q − 2t)F(t, [x]p,q) = 0. (2)

Substitute the series in (2) for F(t, [x]p,q) to get

Hn+1,p,q(x)− 2[x]p,qHn,p,q(x) + 2nHn−1,p,q(x) = 0, n = 1, 2, . . . (3)
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This is the recurrence relation for (p, q)-Hermite polynomials. Another recur-
rence relation comes from(

d

d[x]p,q

)
F(t, [x]p,q)− 2tF(t, [x]p,q) = 0.

This implies (
d

d[x]q

)
Hn,q(x)− 2nHn−1,q(x) = 0, n = 1, 2, . . . . (4)

Eliminate Hn−1,p,q(x) from (3) and (4) to obtain

Hn+1,p,q(x)− 2[x]p,qHn,p,q(x) +

(
d

d[x]p,q

)
Hn,p,q(x) = 0.

Differentiate this equation and use (3) and (4) again to get(
d

d[x]p,q

)2

Hn,p,q(x)− 2[x]p,q

(
d

d[x]p,q

)
Hn,p,q(x) + 2nHn,p,q(x) = 0, n = 0, 1, 2, . . . .

Thus we have the following theorem.

Theorem 2.2. The (p, q)-Hermite polynomials Hn,p,q(x) in generating function
(1) are the solution of equation((

d

d[x]p,q

)2

− 2[x]p,q

(
d

d[x]p,q

)
+ 2n

)
Hn,p,q(x) = 0,

Hn,p,q(0) =

(−1)l
(2l)!

l!
, if n = 2l,

0, otherwise

As another application of the differential equation for Hn,p,q(x) is as follows:
Note that

F(t, [x]q) = e2[x]p,qt−t2

satisfies
dF(t, [x]p,q)

dx
−
(
px log p− qx log q

p− q

)
2tF(t, [x]p,q) = 0. (5)

Substitute the series in (5) for F(t, [x]p,q) to get

dHn,p,q(x)

dx
− 2n log p

p− q
pxHn−1,p,q(x) +

2n log q

p− q
qxHn−1,p,q(x) = 0, n = 1, 2, . . .

(6)
Differentiate this equation and use (3) and (6) again to derive

2n

(
px log p− qx log q

p− q

)
Hn,p,q(x)

−
(
2px − 2qx

p− q
+

(p− q)(px(log p)2 − qx(log q)2)

(px log p− qx log q)2

)
dHn,p,q(x)

dx

+

(
p− q

px log p− qx log q

)
d2Hn,q(x)

dx2
= 0.

(7)
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Hence we have the following theorem.

Theorem 2.3. The (p, q)-Hermite polynomials Hn,p,q(x) in generating function
(1) are the solution of equation((

p− q

px log p− qx log q

)
d2

dx2
−
(
2px − 2qx

p− q
+

(p− q)(px(log p)2 − qx(log q)2)

(px log p− qx log q)2

)
d

dx

+2n

(
px log p− qx log q

p− q

))
Hn,p,q(x) = 0,

Hn,p,q(0) =

(−1)l
(2l)!

l!
, if n = 2l,

0, otherwise

Recently, many mathematicians have studied differential equations that occur
in the generating functions of special polynomials(see [1, 5, 8, 10-15]). The paper
is organized as follows. We derive the differential equations generated from the
generating function of (p, q)-Hermite polynomials:(

∂

∂t

)N

F(t, [x]p,q)−a0(N, [x]p,q)F(t, [x]p,q)−· · ·−aN (N, [x]p,q)t
NF(t, [x]p,q) = 0.

By obtaining the coefficients of this differential equation, we get explicit identities
for the (p, q)–Hermite polynomials in Sect. 3.

3. DIFFERENTIAL EQUATIONS ASSOCIATED WITH
(p, q)-HERMITE POLYNOMIALS

In order to obtain explicit identities for special polynomials, differential equa-
tions arising from the generating functions of special polynomials are studied by
many authors(see [1, 5, 8, 10-16]). In this section, we introduce differential equa-
tions arising from the generating functions of (p, q)-Hermite polynomials and use
these differential equations to obtain the explicit identities for the (p, q)-Hermite
polynomials.

Let

F = F(t, [x]p,q) = e2[x]p,qt−t2 =

∞∑
n=0

Hn,p,q(x)
tn

n!
, x, t ∈ R. (8)

Then, by (8), we have

F (1) =
∂

∂t
F(t, [x]p,q) =

∂

∂t

(
e2[x]p,qt−t2

)
= e2[x]p,qt−t2(2[x]p,q − 2t)

= (2[x]p,q − 2t)F(t, [x]p,q)

= (2[x]p,q)F(t, [x]p,q)

+ (−2)tF(t, [x]p,q),
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F (2) =
∂

∂t
F (1)(t, [x]p,q) = −2F(t, [x]p,q) + (2[x]p,q − 2t)F (1)(t, [x]p,q)

= (−2 + 4[x]2p,q)F(t, [x]p,q)

+ (−8[x]p,q)tF(t, [x]p,q)

+ (−2)2t2F(t, [x]p,q),

and

F (3) =
∂

∂t
F (2)(t, [x]p,q)

= (−8[x]p,q + 8t)F(t, [x]p,q) + (−2 + 4[x]2p,q − 8[x]p,qt+ 4t2)F (1)(t, [x]p,q)

= (−12[x]p,q + 8[x]3p,q)F(t, [x]p,q) + (12− 24[x]2p,q)tF(t, [x]p,q)

+ (24[x]q)t
2G(t, [x]q) + (−2)3t3F(t, [x]p,q).

If we continue this process, we can guess as follows.

F (N) =

(
∂

∂t

)N

F(t, [x]p,q) =

N∑
i=0

ai(N, [x]p,q)t
iF(t, [x]p,q), (N = 0, 1, 2, . . .).

(9)
Differentiating (9) with respect to t, we have

F (N+1) =
∂F (N)

∂t

=

N∑
i=0

ai(N, [x]p,q)it
i−1F(t, [x]p,q) +

N∑
i=0

ai(N, [x]p,q)t
iF (1)(t, [x]p,q)

=

N∑
i=0

ai(N, [x]p,q)it
i−1F(t, [x]p,q) +

N∑
i=0

ai(N, [x]p,q)t
i(2[x]p,q − 2t)F(t, [x]p,q)

=

N∑
i=0

iai(N, [x]p,q)t
i−1F(t, [x]p,q) +

N∑
i=0

(2[x]p,q)ai(N, [x]p,q)t
iF(t, [x]p,q)

+

N∑
i=0

(−2)ai(N, [x]p,q)t
i+1F(t, [x]p,q)

=

N−1∑
i=0

(i+ 1)ai+1(N, [x]p,q)t
iF(t, [x]p,q) +

N∑
i=0

(2[x]p,q)ai(N, [x]p,q)t
iF(t, [x]p,q)

+

N+1∑
i=1

(−2)ai−1(N, [x]p,q)t
iF(t, [x]p,q).

(10)
Now replacing N by N + 1 in (9), we find

F (N+1) =

N+1∑
i=0

ai(N + 1, [x]p,q)t
iF(t, [x]p,q). (11)
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Comparing the coefficients on both sides of (10) and (11), we obtain

a0(N + 1, [x]p,q) = a1(N, [x]p,q) + (2[x]p,q)a0(N, [x]p,q),

aN (N + 1, [x]p,q) = (2[x]p,q)aN (N, [x]p,q) + (−2)aN−1(N, [x]p,q),

aN+1(N + 1, [x]p,q) = (−2)aN (N, [x]p,q),

(12)

and

ai(N + 1, [x]p,q) = (i+ 1)ai+1(N, [x]p,q)

+ (2[x]p,q)ai(N, [x]p,q) + (−2)ai−1(N, [x]p,q), (1 ≤ i ≤ N − 1).
(13)

In addition, by (9), we have

F(t, [x]p,q) = F (0)(t, [x]p,q) = a0(0, [x]p,q)F(t, [x]p,q), (14)

which gives

a0(0, [x]p,q) = 1. (15)

It is not difficult to show that

(2[x]p,q)F(t, [x]p,q) + (−2)tF(t, [x]p,q)

= F (1)(t, [x]p,q)

=

1∑
i=0

ai(1, [x]p,q)F(t, [x]p,q)

= a0(1, [x]p,q)F(t, [x]p,q) + a1(1, [x]p,q)tF(t, [x]p,q).

(16)

Thus, by (11), we also find

a0(1, [x]p,q) = 2[x]p,q, a1(1, [x]p,q) = −2. (17)

From (12), we note that

a0(N + 1, [x]p,q) = a1(N, [x]p,q) + (2[x]p,q)a0(N, [x]p,q),

a0(N, [x]p,q) = a1(N − 1, [x]p,q) + (2x)a0(N − 1, [x]p,q), . . .

a0(N + 1, [x]p,q) =

N∑
i=0

(2[x]p,q)
ia1(N − i, [x]p,q) + (2[x]p,q)

N+1,

(18)

aN (N + 1, [x]p,q) = (2[x]p,q)aN (N, [x]p,q) + (−2)aN−1(N, [x]p,q),

aN−1(N, [x]p,q) = (2[x]p,q)aN−1(N − 1, [x]p,q) + (−2)aN−2(N − 1, [x]p,q), . . .

aN (N + 1, [x]p,q) = (−2)N (N + 1)(2[x]p,q),

(19)
and

aN+1(N + 1, [x]p,q) = (−2)aN (N, [x]p,q),

aN (N, [x]p,q) = (−2)aN−1(N − 1, [x]p,q), . . .

aN+1(N + 1, [x]p,q) = (−2)N+1.

(20)
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For i = 1 in (13), we have

a1(N + 1, [x]p,q)

= 2

N∑
k=0

(2[x]p,q)
ka2(N − k, [x]p,q) + (−2)

N∑
k=0

(2[x]p,q)
ka0(N − k, [x]p,q),

(21)

Continuing this process, we can deduce that, for 1 ≤ i ≤ N − 1,

ai(N + 1, [x]p,q) = (i+ 1)

N∑
k=0

(2[x]p,q)
kai+1(N − k, [x]p,q)

+ (−2)

N∑
k=0

(2[x]p,q)
kai−1(N − k, [x]p,q).

(22)

Note that, here the matrix ai(j, [x]p,q)0≤i,j≤N+1 is given by



1 2[x]p,q −2 + 4[x]2p,q −12[x]p,q + 8[x]3p,q · · · ·

0 (−2) (−2)2(2[x]p,q) 12− 24[x]2p,q · · · ·

0 0 (−2)2 (−2)23(2[x]p,q) · · · ·

0 0 0 (−2)3
. . . ·

...
...

...
...

. . . (−2)N (N + 1)(2[x]p,q)

0 0 0 0 · · · (−2)N+1


Therefore, by (12)-(22), we obtain the following theorem.

Theorem 3.1. For N = 0, 1, 2, . . . , the differential equation

F (N) =

(
∂

∂t

)N

F(t, [x]p,q) =

(
N∑
i=0

ai(N, [x]p,q)t
i

)
F(t, [x]p,q) (23)

has a solution

F = F(t, [x]p,q) = e2[x]p,qt−t2 ,
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where

a0(N, [x]p,q) =

N−1∑
k=0

[x]ip,qa1(N − 1− k, [x]p,q) + (2[x]p,q)
N ,

aN−1(N, [x]p,q) = (−2)N−1N(2[x]p,q),

aN (N, [x]p,q) = (−2)N ,

ai(N + 1, [x]p,q) = (i+ 1)

N∑
k=0

2k[x]kp,qai+1(N − k, [x]p,q)

+ (−2)

N∑
k=0

2k[x]kp,qai−1(N − k, [x]p,q), (1 ≤ i ≤ N − 2).

Making N -times derivative for (1) with respect to t, we have(
∂

∂t

)N

F(t, [x]q) =

(
∂

∂t

)N

e2[x]p,qt−t2 =

∞∑
m=0

Hm+N,p,q(x)
tm

m!
. (24)

By (23) and (24), we have

a0(N, [x]p,q)F(t, [x]p,q)+ · · ·+a1(N, [x]p,q)t
NF(t, [x]p,q) =

∞∑
m=0

Hm+N,p,q(x)
tm

m!
.

Hence we have the following theorem.

Theorem 3.2. For N = 0, 1, 2, . . . , we have

Hm+N,p,q(x) =

m∑
i=0

Hm−i,p,q(x)ai(N, [x]p,q)m!

(m− i)!
, (25)

where

a0(N, [x]p,q) =

N−1∑
k=0

2k[x]kp,qa1(N − 1− k, [x]p,q) + (2[x]p,q)
N ,

aN−1(N, [x]p,q) = (−2)N−1N(2[x]p,q),

aN (N, [x]p,q) = (−2)N ,

ai(N + 1, [x]p,q) = (i+ 1)

N∑
k=0

2k[x]kp,qai+1(N − k, [x]p,q)

+ (−2)

N∑
k=0

2k[x]kp,qai−1(N − k, [x]p,q), (1 ≤ i ≤ N − 2).

If we take m = 0 in (25), then we have the following corollary.

Corollary 3.3. For N = 0, 1, 2, . . . , we have

HN,p,q(x) = a0(N, [x]p,q),
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where,

a0(N, [x]p,q) =

N−1∑
k=0

2k[x]kp,qa1(N − 1− k, [x]p,q) + (2[x]p,q)
N ,

a1(N, [x]p,q) = 2

N−1∑
k=0

(2[x]p,q)
ka2(N − k − 1, [x]p,q)

+ (−2)

N−1∑
k=0

(2[x]p,q)
ka0(N − k − 1, [x]p,q).

For N = 0, 1, 2, . . . , the differential equation

F (N) =

(
∂

∂t

)N

F(t, [x]q) =

(
N∑
i=0

ai(N, [x]p,q)t
i

)
F(t, [x]p,q)

has a solution

F = F(t, [x]p,q) = e2[x]p,qt−t2 .

Here is a plot of the surface for this solution. In Figure 1(left), we choose

Figure 1. The surface for the solution F(t, [x]p,q)

−1 ≤ x ≤ 1, p = 9/10, q = 1/10, and 0 ≤ t ≤ 3. In Figure 1(right), we choose
−1 ≤ x ≤ 1, p = 9/10, q = 1/2, and 0 ≤ t ≤ 3. Here is a plot of the surface for
this solution. In Figure 1(left), we plot of the surface for this solution. In Figure
1(right), we show a higher-resolution density plot of the solution.
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The (p, q)-Hermite polynomials Hn,p,q(x) can be determined explicitly. First
few examples of them are as follows.

H0,p,q(x) = 1,

H1,p,q(x) =
2px

p− q
− 2qx

p− q
,

H2,p,q(x) = −2 +
4p2x

(p− q)2
− 8pxqx

(p− q)2
+

4q2x

(p− q)2
,

H3,p,q(x) =
8p3x

(p− q)3
− 12p2+x

(p− q)3
+

24p1+xq

(p− q)3
− 12pxq2

(p− q)3
+

12p2qx

(p− q)3
− 24p2xqx

(p− q)3

+
24pxq2x

(p− q)3
− 8q3x

(p− q)3
− 24pq1+x

(p− q)3
+

2q2+x

(p− q)3
.
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