• 제목/요약/키워드: Q$_p^{-1}$, Q$_s^{-1}$

검색결과 963건 처리시간 0.019초

ON A q-ANALOGUE OF THE p-ADIC GENERALIZED TWISTED L-FUNCTIONS AND p-ADIC q-INTEGRALS

  • Lee, Chae-Jang
    • 대한수학회지
    • /
    • 제44권1호
    • /
    • pp.1-10
    • /
    • 2007
  • The purpose of this paper is to define generalized twisted q-Bernoulli numbers by using p-adic q-integrals. Furthermore, we construct a q-analogue of the p-adic generalized twisted L-functions which interpolate generalized twisted q-Bernoulli numbers. This is the generalization of Kim's h-extension of p-adic q-L-function which was constructed in [5] and is a partial answer for the open question which was remained in [3].

SELF-RECIPROCAL POLYNOMIALS WITH RELATED MAXIMAL ZEROS

  • Bae, Jaegug;Kim, Seon-Hong
    • 대한수학회보
    • /
    • 제50권3호
    • /
    • pp.983-991
    • /
    • 2013
  • For each real number $n$ > 6, we prove that there is a sequence $\{pk(n,z)\}^{\infty}_{k=1}$ of fourth degree self-reciprocal polynomials such that the zeros of $p_k(n,z)$ are all simple and real, and every $p_{k+1}(n,z)$ has the largest (in modulus) zero ${\alpha}{\beta}$ where ${\alpha}$ and ${\beta}$ are the first and the second largest (in modulus) zeros of $p_k(n,z)$, respectively. One such sequence is given by $p_k(n,z)$ so that $$p_k(n,z)=z^4-q_{k-1}(n)z^3+(q_k(n)+2)z^2-q_{k-1}(n)z+1$$, where $q_0(n)=1$ and other $q_k(n)^{\prime}s$ are polynomials in n defined by the severely nonlinear recurrence $$4q_{2m-1}(n)=q^2_{2m-2}(n)-(4n+1)\prod_{j=0}^{m-2}\;q^2_{2j}(n),\\4q_{2m}(n)=q^2_{2m-1}(n)-(n-2)(n-6)\prod_{j=0}^{m-2}\;q^2_{2j+1}(n)$$ for $m{\geq}1$, with the usual empty product conventions, i.e., ${\prod}_{j=0}^{-1}\;b_j=1$.

LABELLING OF SOME PLANAR GRAPHS WITH A CONDITION AT DISTANCE TWO

  • Zhang, Sumei;Ma, Qiaoling
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.421-426
    • /
    • 2007
  • The problem of vertex labeling with a condition at distance two in a graph, is a variation of Hale's channel assignment problem, which was first explored by Griggs and Yeh. For positive integer $p{\geq}q$, the ${\lambda}_{p,q}$-number of graph G, denoted ${\lambda}(G;p,q)$, is the smallest span among all integer labellings of V(G) such that vertices at distance two receive labels which differ by at least q and adjacent vertices receive labels which differ by at least p. Van den Heuvel and McGuinness have proved that ${\lambda}(G;p,q){\leq}(4q-2){\Delta}+10p+38q-24$ for any planar graph G with maximum degree ${\Delta}$. In this paper, we studied the upper bound of ${\lambda}_{p,q}$-number of some planar graphs. It is proved that ${\lambda}(G;p,q){\leq}(2q-1){\Delta}+2(2p-1)$ if G is an outerplanar graph and ${\lambda}(G;p,q){\leq}(2q-1){\Delta}+6p-4q-1$ if G is a Halin graph.

AN ACTION OF A GALOIS GROUP ON A TENSOR PRODUCT

  • Hwang, Yoon-Sung
    • 대한수학회논문집
    • /
    • 제20권4호
    • /
    • pp.645-648
    • /
    • 2005
  • Let K be a Galois extension of a field F with G = Gal(K/F). Let L be an extension of F such that $K\;{\otimes}_F\;L\;=\; N_1\;{\oplus}N_2\;{\oplus}{\cdots}{\oplus}N_k$ with corresponding primitive idempotents $e_1,\;e_2,{\cdots},e_k$, where Ni's are fields. Then G acts on $\{e_1,\;e_2,{\cdots},e_k\}$ transitively and $Gal(N_1/K)\;{\cong}\;\{\sigma\;{\in}\;G\;/\;{\sigma}(e_1)\;=\;e_1\}$. And, let R be a commutative F-algebra, and let P be a prime ideal of R. Let T = $K\;{\otimes}_F\;R$, and suppose there are only finitely many prime ideals $Q_1,\;Q_2,{\cdots},Q_k$ of T with $Q_i\;{\cap}\;R\;=\;P$. Then G acts transitively on $\{Q_1,\;Q_2,{\cdots},Q_k\},\;and\;Gal(qf(T/Q_1)/qf(R/P))\;{\cong}\;\{\sigma{\in}\;G/\;{\sigma}-(Q_1)\;=\;Q_1\}$ where qf($T/Q_1$) is the quotient field of $T/Q_1$.

LOCAL PERMUTATION POLYNOMIALS OVER FINITE FIELDS

  • Lee, Jung-Bok;Ko, Hyoung-June
    • 대한수학회논문집
    • /
    • 제9권3호
    • /
    • pp.539-545
    • /
    • 1994
  • Let $q = p^r$, where p is a prime. A polynomial $f(x) \in GF(q)[x]$ is called a permutation polynomial (PP) over GF(q) if the numbers f(a) where $a \in GF(Q)$ are a permutation of the a's. In other words, the equation f(x) = a has a unique solution in GF(q) for each $a \in GF(q)$. More generally, $f(x_1, \cdots, x_n)$ is a PP in n variables if $f(x_1,\cdots,x_n) = \alpha$ has exactly $q^{n-1}$ solutions in $GF(q)^n$ for each $\alpha \in GF(q)$. Mullen ([3], [4], [5]) has studied the concepts of local permutation polynomials (LPP's) over finite fields. A polynomial $f(x_i, x_2, \cdots, x_n) \in GF(q)[x_i, \codts,x_n]$ is called a LPP if for each i = 1,\cdots, n, f(a_i,\cdots,x_n]$ is a PP in $x_i$ for all $a_j \in GF(q), j \neq 1$.Mullen ([3],[4]) found a set of necessary and three variables over GF(q) in order that f be a LPP. As examples, there are 12 LPP's over GF(3) in two indeterminates ; $f(x_1, x_2) = a_{10}x_1 + a_{10}x_2 + a_{00}$ where $a_{10} = 1$ or 2, $a_{01} = 1$ or x, $a_{00} = 0,1$, or 2. There are 24 LPP's over GF(3) of three indeterminates ; $F(x_1, x_2, x_3) = ax_1 + bx_2 +cx_3 +d$ where a,b and c = 1 or 2, d = 0,1, or 2.

  • PDF

q-DEDEKIND-TYPE DAEHEE-CHANGHEE SUMS WITH WEIGHT α ASSOCIATED WITH MODIFIED q-EULER POLYNOMIALS WITH WEIGHT α

  • Seo, Jong Jin;Araci, Serkan;Acikgoz, Mehmet
    • 충청수학회지
    • /
    • 제27권1호
    • /
    • pp.1-8
    • /
    • 2014
  • Recently, q-Dedekind-type sums related to q-Euler polynomials was studied by Kim in [T. Kim, Note on q-Dedekind-type sums related to q-Euler polynomials, Glasgow Math. J. 54 (2012), 121-125]. It is aim of this paper to consider a p-adic continuous function for an odd prime to inside a p-adic q-analogue of the higher order Dedekind-type sums with weight related to modified q-Euler polynomials with weight by using Kim's p-adic q-integral.

SARIMA모형을 이용한 코로나19 확진자수 예측 (Prediction of Covid-19 confirmed number of cases using SARIMA model)

  • 김재호;김장영
    • 한국정보통신학회논문지
    • /
    • 제26권1호
    • /
    • pp.58-63
    • /
    • 2022
  • 코로나19의 일일 확진자 수는 천명 후반대에서 2천명대를 유지하고 있으며, 백신접종률이 증가함에도 불구하고 확진자수가 쉽게 줄어들지 않는 상황이다. 변이바이러스는 계속해서 등장하고, 현재는 뮤 변이 바이러스까지 국내에 유입되었다. 본 논문은 코로나 예방전략을 위해 SARIMA 모델을 통해 코로나19 국내 확진자 수를 예측한다. ADF Test와 KPSS Test를 통해 데이터에 추세와 계절성이 있음을 확인한다. SARIMA(p,d,q)(P,D,Q,S)의 p, d, q, P, D, Q의 값은 모형 차수결정 정리로 파라미터를 추출한다. ACF와 PACF를 통해 p, q 파라미터를 추론한다. 차분, 로그변환, 계절성제거 등을 통해 데이터를 정상성 형태로 변환하고, 도식화 하여 파라미터를 도출하고, 계절성이 있다면 S를 정하고, SARIMA P,D,Q를 정하고, 계절성을 제외한 차수에 대해 ACF와 PACF를 보고 ARIMA p,d,q를 정한다.

[Lp] ESTIMATES FOR A ROUGH MAXIMAL OPERATOR ON PRODUCT SPACES

  • AL-QASSEM HUSSAIN MOHAMMED
    • 대한수학회지
    • /
    • 제42권3호
    • /
    • pp.405-434
    • /
    • 2005
  • We establish appropriate $L^p$ estimates for a class of maximal operators $S_{\Omega}^{(\gamma)}$ on the product space $R^n\;\times\;R^m\;when\;\Omega$ lacks regularity and $1\;\le\;\gamma\;\le\;2.\;Also,\;when\;\gamma\;=\;2$, we prove the $L^p\;(2\;{\le}\;P\;<\;\infty)\;boundedness\;of\;S_{\Omega}^{(\gamma)}\;whenever\;\Omega$ is a function in a certain block space $B_q^{(0,0)}(S^{n-1}\;\times\;S^{m-1})$ (for some q > 1). Moreover, we show that the condition $\Omega\;{\in}\;B_q^{(0,0)}(S^{n-1}\;\times\;S^{m-1})$ is nearly optimal in the sense that the operator $S_{\Omega}^{(2)}$ may fail to be bounded on $L^2$ if the condition $\Omega\;{\in}\;B_q^{(0,0)}(S^{n-1}\;\times\;S^{m-1})$ is replaced by the weaker conditions $\Omega\;{\in}\;B_q^{(0,\varepsilon)}(S^{n-1}\;\times\;S^{m-1})\;for\;any\;-1\;<\;\varepsilon\;<\;0.$

최대 경쟁력을 갖는 최소 신설 점포위치 결정 알고리즘 (Algorithm to decide Minimum New Store Positioning with Maximum Competitiveness)

  • 이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.203-209
    • /
    • 2019
  • 고객 수 pop인 도시에 경쟁업체 $F_A$가 p개 점포를 운영하고 있는 경우, 신규 업체 $F_B$$q(1{\leq}q{\leq}p-1)$점포를 신규 개설하고자 한다. 이 경우 pop/(p+q)이상의 고객을 확보할 수 있는 q개 점포 위치를 결정해야 한다. 이 문제에 대해 Han은 포함-배제 알고리즘을 제안하였으며, $q=1,2,{\cdots},p-1$로 증가하면서 이전에 확정된 위치가 변경되는 경우를 고려하여 최대 고객 확보 상위 5개 지점을 선택하여 이들 중 최대 고객 확보 지점으로 결정하였다. 본 논문에서는 초기상태부터 탐색범위를 축소시키고, $q=1,2,{\cdots},p-1$로 증가하면서도 계속적으로 탐색 범위를 축소시키면서 q=1 한 노드에 대해서만 계속 노드를 추가하는 방법을 제안한다. 최종적으로 얻은 q 상호간에 시장을 서로 빼앗는 경우가 발생하면 보다 멀리 떨어트리는 방법으로 해를 개선하였다. 제안된 알고리즘을 11개 사례에 적용한 결과 Han 알고리즘에 비해 단순하면서도 보다 좋은 결과를 얻었다.