Browse > Article
http://dx.doi.org/10.4134/JKMS.2007.44.1.001

ON A q-ANALOGUE OF THE p-ADIC GENERALIZED TWISTED L-FUNCTIONS AND p-ADIC q-INTEGRALS  

Lee, Chae-Jang (Department of Mathematics and Computater Science KonKuk University)
Publication Information
Journal of the Korean Mathematical Society / v.44, no.1, 2007 , pp. 1-10 More about this Journal
Abstract
The purpose of this paper is to define generalized twisted q-Bernoulli numbers by using p-adic q-integrals. Furthermore, we construct a q-analogue of the p-adic generalized twisted L-functions which interpolate generalized twisted q-Bernoulli numbers. This is the generalization of Kim's h-extension of p-adic q-L-function which was constructed in [5] and is a partial answer for the open question which was remained in [3].
Keywords
p-adic integrals; p-adic twisted L-functions; p-Bernoulli numbers;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 T. Kim, On explicit formulas of p-adic q - L-functions, Kyushu J. Math. 48 (1994), no. 1, 73-86   DOI
2 A. C. M. van Rooji, Non-Archimedean Functional Analysis, Monographs and Textbooks in Pure and Applied Math., 51. Marcel Dekker, Inc., New York, 1978
3 G. E. Andrews, Number Theory, W. B. Saunder Company, Philandelphia, London- Toronto, 1971
4 T. Kim, q-Riemann zeta functions, Int. J. Math. Math. Sci. 12 (2004), no. 9-12, 599-605
5 T. Kim, On p-adic q - L-functions and sums of powers, Discrete Math. 252 (2002), no. 1-3, 179-187   DOI   ScienceOn
6 T. Kim, Sums of powers of consecutive q-integers, Adv. Stud. Contemp. Math. (Kyung-shang) 9 (2004), no. 1, 15-18
7 T. Kim and S. H. Rim, Generalized Carlitz's q-Bernoulli numbers in the p-adic number field, Adv. Stud. Contemp. Math. (Pusan) 2 (2000), 9-19
8 N. Koblitz, A new proof of certain formulas for p-adic L-functions, Duke Math. J. 46 (1979), no. 2, 455-468   DOI
9 G. Bachmann, Introduction to p-adic numbers and valuation theory, Academic Press, New York-London, 1964
10 T. Kim, L. C. Jang, S. G. Rim, and H. K. Pak, On the twisted q-zeta functions and q-Bernoulli polynomials, Far East J. Appl. Math. 13 (2003), no. 1, 13-21
11 T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), no. 3, 288-299
12 T. Kim, On Euler-Barnes multiple zeta functions, Russ. J. Math. Phys. 10 (2003), no. 3, 261-267
13 T. Kim, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory 76 (1999), no. 2, 320-329   DOI   ScienceOn
14 T. Kim, p-adic q-integrals associated with Changhee-Barnes' q-Bernoulli polynomials, Integral Transforms Spec. Funct. 15 (2004), no. 5, 415-420   DOI   ScienceOn
15 T. Kim, Non-Archimedean q-integrals associated with multuple Changhee q-Bernoulli polynomials, Russ. J. Math. Phys. 10 (2003), no. 1, 91-98
16 T. Kim, Analytic continuation of multiple q-zeta functions and their values, Russ. J. Math. Phys. 11 (2004), no. 1, 71-76
17 A. M. Robert, A course in p-adic analysis, Graduate Texts in Mathematics, 198. Springer-Verlag, New York, 2000
18 N. Koblitz, p-adic numbers, p-adic analysis and Zeta functions, Graduate Texts in Math-ematics, Vol. 58. Springer-Verlag, New York-Heidelberg, 1977
19 N. Koblitz, On Carlitz's q-Bernoulli numbers, J. Number Theory 14 (1982), no. 3, 332-339   DOI
20 N. Koblitz, p-adic numbers and their functions, Springer-Verlag, GTM 58, 1984
21 W. H. Schikhof, Ultrametric Calculus, Cambridge Studies in Advanced Mathematics, 4. Cambridge University Press, Cambridge, 1984
22 K. Shiratani and S. Yamamoto, On a p-adic interpolating function for the Euler number and its derivative, Mem. Fac. Sci. Kyushu Univ. Ser. A 39 (1985), no. 1, 113-125
23 Y. Simsek, On p-adic twisted q - L-functions related to generalized twisted Bernoulli numbers, Russian J. Math. Phys. 13 (2006), no. 3, 340-348   DOI
24 Y. Simsek, Twisted (h,q)-Bernoulli numbers and polynomials related to twisted (h; q)-zeta function and L-function, J. Math. Anal. Appl. 324 (2006), no. 2, 790-804   DOI   ScienceOn
25 Y. Simsek, Theorems on twisted L-functions and twisted Bernoulli numbers, Adv. Stud. Contemp. Math. 11 (2005), no. 2, 205-218
26 L. C. Washington, Introduction to Cyclotomic fields, Graduate Texts in Mathematics, 83. Springer-Verlag, New York, 1997