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SELF-RECIPROCAL POLYNOMIALS WITH RELATED

MAXIMAL ZEROS

Jaegug Bae and Seon-Hong Kim∗

Abstract. For each real number n > 6, we prove that there is a sequence
{pk(n, z)}

∞
k=1

of fourth degree self-reciprocal polynomials such that the
zeros of pk(n, z) are all simple and real, and every pk+1(n, z) has the
largest (in modulus) zero αβ where α and β are the first and the second
largest (in modulus) zeros of pk(n, z), respectively. One such sequence is
given by pk(n, z) so that

pk(n, z) = z4 − qk−1(n) z
3 + (qk(n) + 2) z2 − qk−1(n) z + 1,

where q0(n) = 1 and other qk(n)’s are polynomials in n defined by the
severely nonlinear recurrence

4q2m−1(n) = q22m−2(n)− (4n+ 1)

m−2∏

j=0

q22j(n),

4q2m(n) = q22m−1(n)− (n− 2)(n − 6)

m−2∏

j=0

q22j+1(n)

for m ≥ 1, with the usual empty product conventions, i.e.,
∏−1

j=0 bj = 1.

1. Introduction and statements of results

There are infinitely many sequences of monic integral polynomials

p1(z), p2(z), p3(z), . . .

whose largest (in modulus) zero of pk+1(z) is αβ where α and β are the first
two largest (in modulus) zeros of pk(z). An example is taken when p1(z) is the
minimal polynomial of a Salem number in which case we can take pk(z) = p1(z)
for all k ≥ 1 because a Salem number is a real algebraic integer > 1 all of
whose conjugates lie inside or on the unit circle, and at least one of these
conjugates has modulus exactly 1. It is known that there are infinitely many
Salem numbers. It does not seem obvious how to find such a sequence of

Received April 25, 2012.
2010 Mathematics Subject Classification. Primary 11B83; Secondary 30C15.
Key words and phrases. self-reciprocal polynomials, polynomials, sequences.
∗This research was supported by the Sookmyung Women’s University Research Grants

2012.

c©2013 The Korean Mathematical Society

983



984 JAEGUG BAE AND SEON-HONG KIM

distinct polynomials each of which has the same degree. We exhibit here an
explicit such sequence consisting of monic self-reciprocal polynomials of degree
4 with integer coefficients. For reference about self-reciprocal polynomial, see
Chapter 7 of [1].

Consider the self-reciprocal polynomial

z4 − z3 − kz2 − z + 1.

One may check that, for 0 ≤ k ≤ 4, it has at least two zeros on the unit circle.
But, for k > 4, no zeros lie on the unit circle. As a generalization of this, we
define, for a real number n > 6,

p1(n, z) = z4 − z3 − (n− 2)z2 − z + 1.

In this paper we show the following.

Theorem 1. For each real number n > 6, there is a sequence {pk(n, z)}∞k=1

of fourth degree self-reciprocal polynomials such that the zeros of pk(n, z) are

all simple and real, and every pk+1(n, z) has the largest (in modulus) zero αβ
where α and β are the first and the second largest (in modulus) zeros of pk(n, z),
respectively. One such sequence is given by pk(n, z) so that

pk(n, z) = z4 − qk−1(n) z
3 + (qk(n) + 2) z2 − qk−1(n) z + 1,

where q0(n) = 1 and other qk(n)’s are polynomials in n defined by the severely

nonlinear recurrence

(1)

4q2m−1(n) = q22m−2(n)− (4n+ 1)
m−2
∏

j=0

q22j(n),

4q2m(n) = q22m−1(n)− (n− 2)(n− 6)

m−2
∏

j=0

q22j+1(n)

for m ≥ 1, with the usual empty product conventions, i.e.,
∏

−1

j=0
bj = 1.

2. Proof of Theorem 1

We define

uk(n) =

{

4n+ 1 for k odd,

(n− 2)(n− 6) for k even.

Then one may write (1) as

(2) 4qk(n) = q2k−1(n)− uk(n)

[ k−1

2 ]
∏

j=1

q2k−2j−1(n)

for k ≥ 1. Note that uk(n) > 0 for n > 6, and uk(n) = uk+2(n) for any integer
k ≥ 1. For notational convenience, write qk, uk instead of qk(n), uk(n) when
n is irrelevant to the context. The values of qk for 0 ≤ k ≤ 5 are as follows.

q0 = 1,
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q1 = −n,

q2 = 2n− 3,

q3 = n2 − 4n+ 2,

q4 = 2n2 − 4n+ 1,

q5 = n4 − 8n3 + 16n2 − 8n− 2.

We begin by establishing some properties of the qk polynomials.

Lemma 2. For any integer k ≥ 1,

(3) q2k+1 − 4qk+2 = q2k−1(q
2
k−1 − 4qk).

Proof. From the equation (2) with k + 2, we have

q2k+1 − 4qk+2 = uk+2

[ k+1

2 ]
∏

j=1

q2k−2j+1

=






uk

[ k−1

2 ]
∏

j=1

q2k−2j−1






q2k−1 = (q2k−1 − 4qk) q

2
k−1.

�

Lemma 3. For any integer k ≥ 1, we have

(i) qk+1 = q2k−1 − 2qk − 4,

(ii) 4qk < q2k−1 < 2qk+1 + 8 for n > 6.

Proof. To prove (i), we use an induction on k. From

q20 − 2q1 − 4 = 1 + 2n− 4 = 2n− 3 = q2,

we observe that (i) holds for k = 1. Assume qk+1 = q2k−1 − 2qk − 4. Then by
(3),

4qk+2 = q2k+1 − q2k−1(q
2
k−1 − 4qk)

= (q2k−1 − 2qk − 4)2 − q4k−1 + 4q2k−1qk

= 4q2k − 8q2k−1 + 16qk + 16 = 4q2k − 8(q2k−1 − 2qk − 4)− 16

= 4q2k − 8qk+1 − 16 = 4(q2k − 2qk+1 − 4).

For (ii), it follows from equation (2) that

(4) q2k−1 − 4qk = uk

[ k−1

2 ]
∏

j=1

q2k−2j−1 > 0,

and this implies the first inequality in (ii). Now applying (i) and (4), we obtain

2qk+1 + 8− q2k−1 = 2(q2k−1 − 2qk − 4) + 8− q2k−1

= q2k−1 − 4qk > 0,

which proves the second inequality in (ii). �
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Lemma 4. If n > 6, then for any integer k ≥ 2, we have

9 < qk < qk+1.

Proof. First, we show that 9 < qk by using induction on k. Obviously, q2 =
2n − 3 > 9 since n > 6. Let us assume 9 < qk. Then by Lemma 3(ii), we
have the inequality 2qk+1 + 8 > 4qk > 36 or qk+1 > 14 > 9 which completes
the induction. And again Lemma 3(ii) says that 4qk < 2qk+1 + 8 < 4qk+1 or
qk < qk+1. �

Lemma 5. For n > 6, we have

(4qk − q2k−1)
2((qk + 4)2 − (2qk−1)

2) 6= 0.

Proof. By Lemma 3(ii), 4qk 6= q2k−1 is obvious. Next, we show (qk + 4)2 −
(2qk−1)

2 > 0. For k = 1, (q1 + 4)2 − (2q0)
2 = (n − 4)2 − 4 > 0 since n > 6.

And for k = 2, again we see that (q2 + 4)2 − (2q1)
2 = (2n + 1)2 − 4n2 > 0.

For k ≥ 3, since qk + 4 > 2qk−1 > 0 by Lemma 3(ii) and Lemma 4, we have
(qk + 4)2 − (2qk−1)

2 > 0. �

We are now ready to prove Theorem 1.

Proof. The resultant of pk(n, z) and p′k(n, z) in z is

(4qk − q2k−1)
2(qk + 2qk−1 + 4)(qk − 2qk−1 + 4)

= (4qk − q2k−1)
2((qk + 4)2 − (2qk−1)

2)

which is nonzero by Lemma 5. So all zeros of pk(n, z) are simple. Let

w = z +
1

z
.

Then

pk(n, z) = z2
((

z2 +
1

z2

)

− qk−1

(

z +
1

z

)

+ (qk + 2)

)

= z2(w2 − qk−1w + qk),

and so the zeros of pk(n, z) satisfy

z2 − wz + 1 = 0,

where

w = wk,0 =
1

2

(

qk−1 +
√

q2k−1
− 4qk

)

or

w = wk,1 =
1

2

(

qk−1 −
√

q2k−1
− 4qk

)

.

We note that all zeros of pk(n, z) are real because the discriminant of the
quadratic equation z2 − wz + 1 = 0 is

w2 − 4 =
1

2
q2k−1 − qk − 4± 1

2
qk−1

√

q2k−1
− 4qk
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=
1

2

(

(q2k−1 − 2qk − 8)± qk−1

√

q2k−1
− 4qk

)

>
1

2

(

(q2k−1 − 2qk − 8)−
∣

∣

∣qk−1

√

q2k−1
− 4qk

∣

∣

∣

)

and by Lemmas 3 and 4,

q2k−1 − 2qk − 8 = qk+1 − 4 > 0 and

(q2k−1 − 2qk − 8)2 −
∣

∣

∣qk−1

√

q2k−1
− 4qk

∣

∣

∣

2

= 4q2k − 16(q2k−1 − 2qk − 4) = 4(q2k − 4qk+1) > 0.

We now prove that

w1,0 > 0, w1,1 < 0, w2,0 < 0, w2,1 < 0, and

wk,0 > 0, wk,1 > 0 for k ≥ 3,

and that the product of the first two largest (in modulus) zeros of pk(n, z) is

1

4

(

w1,0 +
√

w2
1,0 − 4

)(

w1,1 −
√

w2
1,1 − 4

)

,

1

4

(

w2,0 −
√

w2
2,0 − 4

)(

w2,1 −
√

w2
2,1 − 4

)

,

1

4

(

wk,0 +
√

w2
k,0 − 4

)(

wk,1 +
√

w2
k,1 − 4

)

, k ≥ 3,

respectively. By direct calculation, we have

w1,0 > 0 > w1,1 > −w1,0 and w2,1 < w2,0 < 0.

For k ≥ 3, the fact wk,0 > wk,1 > 0 follows immediately from

qk−1 >
√

q2k−1
− 4qk > 0.

Thus, for k ≥ 3, the first two largest zeros of pk(n, z) are the larger positive
zero of

z2 − wk,0z + 1 = 0

and the larger positive zero of

z2 − wk,1z + 1 = 0.

This is because the product of the two zeros of each equation equals 1 and all
of the four zeros are positive (since wk,0 > wk,1 > 0). Hence the product the
first two largest zeros of pk(n, z) is

1

4

(

wk,0 +
√

w2
k,0 − 4

)(

wk,1 +
√

w2
k,1 − 4

)

.

So, since wk,0 > wk,1, it is enough to show that

1

2

(

wk+1,0 +
√

w2
k+1,0 − 4

)

=
1

4

(

wk,0 +
√

w2
k,0 − 4

)(

wk,1 +
√

w2
k,1 − 4

)

.
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On the other hand, for k = 1, 2, we need to show that

1

2

(

w2,1 −
√

w2
2,1 − 4

)

=
1

4

(

w1,0 +
√

w2
1,0 − 4

)(

w1,1 −
√

w2
1,1 − 4

)

,

1

2

(

w3,0 +
√

w2
3,0 − 4

)

=
1

4

(

w2,0 −
√

w2
2,0 − 4

)(

w2,1 −
√

w2
2,1 − 4

)

or

2
(

w2,1 −
√

w2
2,1 − 4

)

=
(

w1,0 +
√

w2
1,0 − 4

)(

w1,1 −
√

w2
1,1 − 4

)

,

2
(

w3,0 +
√

w2
3,0 − 4

)

=
(

w2,0 −
√

w2
2,0 − 4

)(

w2,1 −
√

w2
2,1 − 4

)

.

Note that

w1,0 =
1 +

√
4n+ 1

2
, w1,1 =

1−
√
4n+ 1

2
,

w2,0 =
−n+

√
n2 − 8n+ 12

2
, w2,1 =

−n−
√
n2 − 8n+ 12

2
,

w3,0 =
2n− 3 +

√
4n+ 1

2
, w3,1 =

2n− 3−
√
4n+ 1

2
.

So, with a little calculation, we have
(

w1,0 +
√

w2
1,0 − 4

)(

w1,1 −
√

w2
1,1 − 4

)

= w1,0 · w1,1 −
√

(w2
1,0 − 4)(w2

1,1 − 4) + w1,1

√

w2
1,0 − 4− w1,0

√

w2
1,1 − 4

= − n−
√

n2 − 8n+ 12

−
(
√

n2 − 4n− 2 + 2
√
4n+ 1 +

√

n2 − 4n− 2− 2
√
4n+ 1

)

= 2w2,1 −
√

2(n2 − 4n− 2) + 2

√

(n2 − 4n− 2)2 −
(

2
√
4n+ 1

)2

= 2w2,1 −
√

2(n2 − 4n− 2) + 2n
√

n2 − 8n+ 12

= 2
(

w2,1 −
√

w2
2,1 − 4

)

.

The fact that
√
A+B +

√
A−B =

√

2A+ 2
√
A2 −B2 is used in the third

equality. And similarly we have
(

w2,0 −
√

w2
2,0 − 4

)(

w2,1 −
√

w2
2,1 − 4

)

= w2,0 · w2,1 +
√

(w2
2,0 − 4)(w2

2,1 − 4)− w2,1

√

w2
2,0 − 4− w2,0

√

w2
2,1 − 4

= 2n− 3 +
√
4n+ 1 +

√

2n2 − 4n− 3− 2n
√

n2 − 8n+ 12

+

√

2n2 − 4n− 3 + 2n
√

n2 − 8n+ 12
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= 2w3,0 +

√

2(2n2 − 4n− 3) + 2

√

(2n2 − 4n− 3)2 −
(

2n
√

n2 − 8n+ 12
)2

= 2w3,0 +

√

2(2n2 − 4n− 3) + 2(2n− 3)
√
4n+ 1

= 2
(

w3,0 +
√

w2
3,0 − 4

)

.

Finally, we prove

1

2

(

wk+1,0 +
√

w2
k+1,0 − 4

)

=
1

4

(

wk,0 +
√

w2
k,0 − 4

)(

wk,1 +
√

w2
k,1 − 4

)

or

(5)
8
(

wk+1,0 +
√

w2
k+1,0 − 4

)

= 4
(

wk,0 +
√

w2
k,0 − 4

)(

wk,1 +
√

w2
k,1 − 4

)

,

where

wk,0 =
1

2

(

qk−1 +
√

q2k−1
− 4qk

)

, wk,1 =
1

2

(

qk−1 −
√

q2k−1
− 4qk

)

.

Direct calculation gives

4(w2
k,0 − 4)

= 2q2k−1 − 4qk − 16 + 2qk−1

√

q2k−1
− 4qk

= 2qk+1 − 8 + 2qk−1

√

q2k−1
− 4qk

= 2qk+1 − 8 + 2
√

q2k+1
− 4qk+2,

where the second and the third equalities follow from Lemma 3(i) and Lemma
2, respectively. Hence we have

2
(

wk,0 +
√

w2
k,0 − 4

)

= qk−1 +
√

q2k−1
− 4qk +

√

2qk+1 − 8 + 2
√

q2k+1
− 4qk+2 ,

2
(

wk+1,0 +
√

w2
k+1,0 − 4

)

= qk +
√

q2k − 4qk+1 +

√

2qk+2 − 8 + 2
√

q2k+2
− 4qk+3 .

And the similar calculation gives

2
(

wk,1 +
√

w2
k,1 − 4

)

= qk−1−
√

q2k−1
− 4qk+

√

2qk+1 − 8− 2
√

q2k+1
− 4qk+2 .

Let a = qk−1, b = q2k−1 − 4qk, c = 2qk+1 − 8, d = q2k+1 − 4qk+2. Then

4
(

wk,0 +
√

w2
k,0 − 4

)(

wk,1 +
√

w2
k,1 − 4

)
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=

(

a+
√
b+

√

c+ 2
√
d

)(

a−
√
b+

√

c− 2
√
d

)

= a2 − b+
√

c2 − 4d+
(

a+
√
b
)

√

c− 2
√
d+

(

a−
√
b
)

√

c+ 2
√
d.

Since a2 − b = 4qk and

(6)

√

c2 − 4d =
√

(2qk+1 − 8)2 − 4(q2k+1
− 4qk+2)

=
√

−32qk+1 + 64 + 16qk+2

=
√

−32qk+1 + 64 + 16(q2k − 2qk+1 − 4)

= 4
√

q2k − 4qk+1 ,

in order to prove (5), it is enough to show that

4

√

2qk+2 − 8 + 2
√

q2k+2
− 4qk+3 =

(

a+
√
b
)

√

c− 2
√
d+

(

a−
√
b
)

√

c+ 2
√
d

or, by squaring both sides,

(7)

16
(

2qk+2 − 8 + 2
√

q2k+2
− 4qk+3

)

=

(

(

a+
√
b
)

√

c− 2
√
d+

(

a−
√
b
)

√

c+ 2
√
d

)2

.

Applying (6) and

a2b d = q2k−1(q
2
k−1 − 4qk)(q

2
k+1 − 4qk+2) = (q2k+1 − 4qk+2)

2 and

a2 + b = 2q2k−1 − 4qk = 2(q2k−1 − 2qk) = 2(qk+1 + 4),

in the following calculation, we see that the expansion of right side of (7) is
equal to

2(a2 + b)c− 8
√
a2bd+ 2(a2 − b)

√

c2 − 4d

= 2 · 2(qk+1 + 4)(2qk+1 − 8)− 8(q2k+1 − 4qk+2) + 2 · 4qk · 4
√

q2k − 4qk+1

= 16

(

2qk+2 − 8 + 2
√

q2k(q
2
k − 4qk+1)

)

= 16
(

2qk+2 − 8 + 2
√

q2k+2
− 4qk+3

)

of which last expression is exactly the left side of (7). This completes the
proof. �

Remarks. Our proof has the advantage of directness, but it would be desirable
to have a less computational proof.

If we replace n by z and consider the qk(z) as polynomials in a complex
variable, their zero distribution is of interest. For k ≥ 5, k odd, the number
of zeros in the interval (2, 6) seems to follow the Jacobsthal 2x ± 1 sequence
{1, 3, 5, 11, 21, 43, 85, . . .}. Machine computation also suggests the following.
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For k large and odd, the zeros are real, no zeros exceeds 6, and the zero “den-
sity” increases as z goes from 2 to 6. In small neighborhoods of 2, there are
more zeros less than 2 than greater than 2. Every zero exceeds −1/4. Some
similar conjectures may be made for k even, except that here the negative zeros
seem to be unbounded.

For n large and k even, the pk(n, x) seem to be irreducible, but, for n large
and k odd, the pk(n, x) seem to have remarkable factorizations precisely when
n = t(t+ 1). For example,

p1(n, z) = (z2 + tz + 1)(z2 − (t+ 1)z + 1),

p3(n, z) = (z2 − (t2 − 2)z + 1)(z2 − (t2 + 2t− 1)z + 1),

p5(n, z) = (z2 − (t4 − 4t2 + 2)z + 1)(z2 − (t4 + 4t3 + 2t2 − 4t− 1)z + 1),

p7(n, z) = (z2 − (t8 − 8t6 + 20t4 − 16t2 + 2)z + 1)

(z2 − (t8 + 8t7 + 20t6 + 8t5 − 30t4 − 24t3 + 12t2 + 8t− 1)z + 1),

and so on.

Acknowledgment. The authors wish to thank to Professor Kenneth B. Sto-
larsky who gave us the conjecture that is now Theorem 1.
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