SELF-RECIPROCAL POLYNOMIALS WITH RELATED MAXIMAL ZEROS

Jaegug Bae and Seon-Hong Kim*

Abstract. For each real number $n>6$, we prove that there is a sequence $\left\{p_{k}(n, z)\right\}_{k=1}^{\infty}$ of fourth degree self-reciprocal polynomials such that the zeros of $p_{k}(n, z)$ are all simple and real, and every $p_{k+1}(n, z)$ has the largest (in modulus) zero $\alpha \beta$ where α and β are the first and the second largest (in modulus) zeros of $p_{k}(n, z)$, respectively. One such sequence is given by $p_{k}(n, z)$ so that

$$
p_{k}(n, z)=z^{4}-q_{k-1}(n) z^{3}+\left(q_{k}(n)+2\right) z^{2}-q_{k-1}(n) z+1
$$

where $q_{0}(n)=1$ and other $q_{k}(n)$'s are polynomials in n defined by the severely nonlinear recurrence

$$
\begin{aligned}
4 q_{2 m-1}(n) & =q_{2 m-2}^{2}(n)-(4 n+1) \prod_{j=0}^{m-2} q_{2 j}^{2}(n) \\
4 q_{2 m}(n) & =q_{2 m-1}^{2}(n)-(n-2)(n-6) \prod_{j=0}^{m-2} q_{2 j+1}^{2}(n)
\end{aligned}
$$

for $m \geq 1$, with the usual empty product conventions, i.e., $\prod_{j=0}^{-1} b_{j}=1$.

1. Introduction and statements of results

There are infinitely many sequences of monic integral polynomials

$$
p_{1}(z), p_{2}(z), p_{3}(z), \ldots
$$

whose largest (in modulus) zero of $p_{k+1}(z)$ is $\alpha \beta$ where α and β are the first two largest (in modulus) zeros of $p_{k}(z)$. An example is taken when $p_{1}(z)$ is the minimal polynomial of a Salem number in which case we can take $p_{k}(z)=p_{1}(z)$ for all $k \geq 1$ because a Salem number is a real algebraic integer >1 all of whose conjugates lie inside or on the unit circle, and at least one of these conjugates has modulus exactly 1 . It is known that there are infinitely many Salem numbers. It does not seem obvious how to find such a sequence of

[^0]distinct polynomials each of which has the same degree. We exhibit here an explicit such sequence consisting of monic self-reciprocal polynomials of degree 4 with integer coefficients. For reference about self-reciprocal polynomial, see Chapter 7 of [1].

Consider the self-reciprocal polynomial

$$
z^{4}-z^{3}-k z^{2}-z+1
$$

One may check that, for $0 \leq k \leq 4$, it has at least two zeros on the unit circle. But, for $k>4$, no zeros lie on the unit circle. As a generalization of this, we define, for a real number $n>6$,

$$
p_{1}(n, z)=z^{4}-z^{3}-(n-2) z^{2}-z+1 .
$$

In this paper we show the following.
Theorem 1. For each real number $n>6$, there is a sequence $\left\{p_{k}(n, z)\right\}_{k=1}^{\infty}$ of fourth degree self-reciprocal polynomials such that the zeros of $p_{k}(n, z)$ are all simple and real, and every $p_{k+1}(n, z)$ has the largest (in modulus) zero $\alpha \beta$ where α and β are the first and the second largest (in modulus) zeros of $p_{k}(n, z)$, respectively. One such sequence is given by $p_{k}(n, z)$ so that

$$
p_{k}(n, z)=z^{4}-q_{k-1}(n) z^{3}+\left(q_{k}(n)+2\right) z^{2}-q_{k-1}(n) z+1,
$$

where $q_{0}(n)=1$ and other $q_{k}(n)$'s are polynomials in n defined by the severely nonlinear recurrence

$$
\begin{align*}
4 q_{2 m-1}(n) & =q_{2 m-2}^{2}(n)-(4 n+1) \prod_{j=0}^{m-2} q_{2 j}^{2}(n) \\
4 q_{2 m}(n) & =q_{2 m-1}^{2}(n)-(n-2)(n-6) \prod_{j=0}^{m-2} q_{2 j+1}^{2}(n) \tag{1}
\end{align*}
$$

for $m \geq 1$, with the usual empty product conventions, i.e., $\prod_{j=0}^{-1} b_{j}=1$.

2. Proof of Theorem 1

We define

$$
u_{k}(n)= \begin{cases}4 n+1 & \text { for } k \text { odd } \\ (n-2)(n-6) & \text { for } k \text { even }\end{cases}
$$

Then one may write (1) as

$$
\begin{equation*}
4 q_{k}(n)=q_{k-1}^{2}(n)-u_{k}(n) \prod_{j=1}^{\left[\frac{k-1}{2}\right]} q_{k-2 j-1}^{2}(n) \tag{2}
\end{equation*}
$$

for $k \geq 1$. Note that $u_{k}(n)>0$ for $n>6$, and $u_{k}(n)=u_{k+2}(n)$ for any integer $k \geq 1$. For notational convenience, write q_{k}, u_{k} instead of $q_{k}(n), u_{k}(n)$ when n is irrelevant to the context. The values of q_{k} for $0 \leq k \leq 5$ are as follows.

$$
q_{0}=1,
$$

$$
\begin{aligned}
& q_{1}=-n \\
& q_{2}=2 n-3 \\
& q_{3}=n^{2}-4 n+2 \\
& q_{4}=2 n^{2}-4 n+1 \\
& q_{5}=n^{4}-8 n^{3}+16 n^{2}-8 n-2 .
\end{aligned}
$$

We begin by establishing some properties of the q_{k} polynomials.
Lemma 2. For any integer $k \geq 1$,

$$
\begin{equation*}
q_{k+1}^{2}-4 q_{k+2}=q_{k-1}^{2}\left(q_{k-1}^{2}-4 q_{k}\right) . \tag{3}
\end{equation*}
$$

Proof. From the equation (2) with $k+2$, we have

$$
\begin{aligned}
q_{k+1}^{2}-4 q_{k+2} & =u_{k+2} \prod_{j=1}^{\left[\frac{k+1}{2}\right]} q_{k-2 j+1}^{2} \\
& =\left(u_{k} \prod_{j=1}^{\left[\frac{k-1}{2}\right]} q_{k-2 j-1}^{2}\right) q_{k-1}^{2}=\left(q_{k-1}^{2}-4 q_{k}\right) q_{k-1}^{2} .
\end{aligned}
$$

Lemma 3. For any integer $k \geq 1$, we have
(i) $q_{k+1}=q_{k-1}^{2}-2 q_{k}-4$,
(ii) $4 q_{k}<q_{k-1}^{2}<2 q_{k+1}+8$ for $n>6$.

Proof. To prove (i), we use an induction on k. From

$$
q_{0}^{2}-2 q_{1}-4=1+2 n-4=2 n-3=q_{2}
$$

we observe that (i) holds for $k=1$. Assume $q_{k+1}=q_{k-1}^{2}-2 q_{k}-4$. Then by (3),

$$
\begin{aligned}
4 q_{k+2} & =q_{k+1}^{2}-q_{k-1}^{2}\left(q_{k-1}^{2}-4 q_{k}\right) \\
& =\left(q_{k-1}^{2}-2 q_{k}-4\right)^{2}-q_{k-1}^{4}+4 q_{k-1}^{2} q_{k} \\
& =4 q_{k}^{2}-8 q_{k-1}^{2}+16 q_{k}+16=4 q_{k}^{2}-8\left(q_{k-1}^{2}-2 q_{k}-4\right)-16 \\
& =4 q_{k}^{2}-8 q_{k+1}-16=4\left(q_{k}^{2}-2 q_{k+1}-4\right) .
\end{aligned}
$$

For (ii), it follows from equation (2) that

$$
\begin{equation*}
q_{k-1}^{2}-4 q_{k}=u_{k} \prod_{j=1}^{\left[\frac{k-1}{2}\right]} q_{k-2 j-1}^{2}>0 \tag{4}
\end{equation*}
$$

and this implies the first inequality in (ii). Now applying (i) and (4), we obtain

$$
\begin{aligned}
2 q_{k+1}+8-q_{k-1}^{2} & =2\left(q_{k-1}^{2}-2 q_{k}-4\right)+8-q_{k-1}^{2} \\
& =q_{k-1}^{2}-4 q_{k}>0,
\end{aligned}
$$

which proves the second inequality in (ii).

Lemma 4. If $n>6$, then for any integer $k \geq 2$, we have

$$
9<q_{k}<q_{k+1} .
$$

Proof. First, we show that $9<q_{k}$ by using induction on k. Obviously, $q_{2}=$ $2 n-3>9$ since $n>6$. Let us assume $9<q_{k}$. Then by Lemma 3(ii), we have the inequality $2 q_{k+1}+8>4 q_{k}>36$ or $q_{k+1}>14>9$ which completes the induction. And again Lemma 3(ii) says that $4 q_{k}<2 q_{k+1}+8<4 q_{k+1}$ or $q_{k}<q_{k+1}$.

Lemma 5. For $n>6$, we have

$$
\left(4 q_{k}-q_{k-1}^{2}\right)^{2}\left(\left(q_{k}+4\right)^{2}-\left(2 q_{k-1}\right)^{2}\right) \neq 0
$$

Proof. By Lemma 3(ii), $4 q_{k} \neq q_{k-1}^{2}$ is obvious. Next, we show $\left(q_{k}+4\right)^{2}-$ $\left(2 q_{k-1}\right)^{2}>0$. For $k=1,\left(q_{1}+4\right)^{2}-\left(2 q_{0}\right)^{2}=(n-4)^{2}-4>0$ since $n>6$. And for $k=2$, again we see that $\left(q_{2}+4\right)^{2}-\left(2 q_{1}\right)^{2}=(2 n+1)^{2}-4 n^{2}>0$. For $k \geq 3$, since $q_{k}+4>2 q_{k-1}>0$ by Lemma 3(ii) and Lemma 4, we have $\left(q_{k}+4\right)^{2}-\left(2 q_{k-1}\right)^{2}>0$.

We are now ready to prove Theorem 1.
Proof. The resultant of $p_{k}(n, z)$ and $p_{k}^{\prime}(n, z)$ in z is

$$
\begin{aligned}
& \left(4 q_{k}-q_{k-1}^{2}\right)^{2}\left(q_{k}+2 q_{k-1}+4\right)\left(q_{k}-2 q_{k-1}+4\right) \\
= & \left(4 q_{k}-q_{k-1}^{2}\right)^{2}\left(\left(q_{k}+4\right)^{2}-\left(2 q_{k-1}\right)^{2}\right)
\end{aligned}
$$

which is nonzero by Lemma 5 . So all zeros of $p_{k}(n, z)$ are simple. Let

$$
w=z+\frac{1}{z} .
$$

Then

$$
\begin{aligned}
p_{k}(n, z) & =z^{2}\left(\left(z^{2}+\frac{1}{z^{2}}\right)-q_{k-1}\left(z+\frac{1}{z}\right)+\left(q_{k}+2\right)\right) \\
& =z^{2}\left(w^{2}-q_{k-1} w+q_{k}\right)
\end{aligned}
$$

and so the zeros of $p_{k}(n, z)$ satisfy

$$
z^{2}-w z+1=0
$$

where

$$
w=w_{k, 0}=\frac{1}{2}\left(q_{k-1}+\sqrt{q_{k-1}^{2}-4 q_{k}}\right)
$$

or

$$
w=w_{k, 1}=\frac{1}{2}\left(q_{k-1}-\sqrt{q_{k-1}^{2}-4 q_{k}}\right) .
$$

We note that all zeros of $p_{k}(n, z)$ are real because the discriminant of the quadratic equation $z^{2}-w z+1=0$ is

$$
w^{2}-4=\frac{1}{2} q_{k-1}^{2}-q_{k}-4 \pm \frac{1}{2} q_{k-1} \sqrt{q_{k-1}^{2}-4 q_{k}}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left(\left(q_{k-1}^{2}-2 q_{k}-8\right) \pm q_{k-1} \sqrt{q_{k-1}^{2}-4 q_{k}}\right) \\
& >\frac{1}{2}\left(\left(q_{k-1}^{2}-2 q_{k}-8\right)-\left|q_{k-1} \sqrt{q_{k-1}^{2}-4 q_{k}}\right|\right)
\end{aligned}
$$

and by Lemmas 3 and 4,

$$
\begin{aligned}
& q_{k-1}^{2}-2 q_{k}-8=q_{k+1}-4>0 \quad \text { and } \\
& \left(q_{k-1}^{2}-2 q_{k}-8\right)^{2}-\left|q_{k-1} \sqrt{q_{k-1}^{2}-4 q_{k}}\right|^{2} \\
= & 4 q_{k}^{2}-16\left(q_{k-1}^{2}-2 q_{k}-4\right)=4\left(q_{k}^{2}-4 q_{k+1}\right)>0
\end{aligned}
$$

We now prove that

$$
\begin{aligned}
& w_{1,0}>0, w_{1,1}<0, w_{2,0}<0, w_{2,1}<0, \quad \text { and } \\
& w_{k, 0}>0, w_{k, 1}>0 \text { for } k \geq 3
\end{aligned}
$$

and that the product of the first two largest (in modulus) zeros of $p_{k}(n, z)$ is

$$
\begin{aligned}
& \frac{1}{4}\left(w_{1,0}+\sqrt{w_{1,0}^{2}-4}\right)\left(w_{1,1}-\sqrt{w_{1,1}^{2}-4}\right) \\
& \frac{1}{4}\left(w_{2,0}-\sqrt{w_{2,0}^{2}-4}\right)\left(w_{2,1}-\sqrt{w_{2,1}^{2}-4}\right) \\
& \frac{1}{4}\left(w_{k, 0}+\sqrt{w_{k, 0}^{2}-4}\right)\left(w_{k, 1}+\sqrt{w_{k, 1}^{2}-4}\right), \quad k \geq 3
\end{aligned}
$$

respectively. By direct calculation, we have

$$
w_{1,0}>0>w_{1,1}>-w_{1,0} \quad \text { and } \quad w_{2,1}<w_{2,0}<0
$$

For $k \geq 3$, the fact $w_{k, 0}>w_{k, 1}>0$ follows immediately from

$$
q_{k-1}>\sqrt{q_{k-1}^{2}-4 q_{k}}>0
$$

Thus, for $k \geq 3$, the first two largest zeros of $p_{k}(n, z)$ are the larger positive zero of

$$
z^{2}-w_{k, 0} z+1=0
$$

and the larger positive zero of

$$
z^{2}-w_{k, 1} z+1=0
$$

This is because the product of the two zeros of each equation equals 1 and all of the four zeros are positive (since $w_{k, 0}>w_{k, 1}>0$). Hence the product the first two largest zeros of $p_{k}(n, z)$ is

$$
\frac{1}{4}\left(w_{k, 0}+\sqrt{w_{k, 0}^{2}-4}\right)\left(w_{k, 1}+\sqrt{w_{k, 1}^{2}-4}\right)
$$

So, since $w_{k, 0}>w_{k, 1}$, it is enough to show that

$$
\frac{1}{2}\left(w_{k+1,0}+\sqrt{w_{k+1,0}^{2}-4}\right)=\frac{1}{4}\left(w_{k, 0}+\sqrt{w_{k, 0}^{2}-4}\right)\left(w_{k, 1}+\sqrt{w_{k, 1}^{2}-4}\right)
$$

On the other hand, for $k=1,2$, we need to show that

$$
\begin{aligned}
& \frac{1}{2}\left(w_{2,1}-\sqrt{w_{2,1}^{2}-4}\right)=\frac{1}{4}\left(w_{1,0}+\sqrt{w_{1,0}^{2}-4}\right)\left(w_{1,1}-\sqrt{w_{1,1}^{2}-4}\right) \\
& \frac{1}{2}\left(w_{3,0}+\sqrt{w_{3,0}^{2}-4}\right)=\frac{1}{4}\left(w_{2,0}-\sqrt{w_{2,0}^{2}-4}\right)\left(w_{2,1}-\sqrt{w_{2,1}^{2}-4}\right)
\end{aligned}
$$

or

$$
\begin{aligned}
& 2\left(w_{2,1}-\sqrt{w_{2,1}^{2}-4}\right)=\left(w_{1,0}+\sqrt{w_{1,0}^{2}-4}\right)\left(w_{1,1}-\sqrt{w_{1,1}^{2}-4}\right) \\
& 2\left(w_{3,0}+\sqrt{w_{3,0}^{2}-4}\right)=\left(w_{2,0}-\sqrt{w_{2,0}^{2}-4}\right)\left(w_{2,1}-\sqrt{w_{2,1}^{2}-4}\right)
\end{aligned}
$$

Note that

$$
\begin{array}{ll}
w_{1,0}=\frac{1+\sqrt{4 n+1}}{2}, & w_{1,1}=\frac{1-\sqrt{4 n+1}}{2} \\
w_{2,0}=\frac{-n+\sqrt{n^{2}-8 n+12}}{2}, & w_{2,1}=\frac{-n-\sqrt{n^{2}-8 n+12}}{2} \\
w_{3,0}=\frac{2 n-3+\sqrt{4 n+1}}{2}, & w_{3,1}=\frac{2 n-3-\sqrt{4 n+1}}{2} .
\end{array}
$$

So, with a little calculation, we have

$$
\begin{aligned}
& \left(w_{1,0}+\sqrt{w_{1,0}^{2}-4}\right)\left(w_{1,1}-\sqrt{w_{1,1}^{2}-4}\right) \\
= & w_{1,0} \cdot w_{1,1}-\sqrt{\left(w_{1,0}^{2}-4\right)\left(w_{1,1}^{2}-4\right)}+w_{1,1} \sqrt{w_{1,0}^{2}-4}-w_{1,0} \sqrt{w_{1,1}^{2}-4} \\
= & -n-\sqrt{n^{2}-8 n+12} \\
& -\left(\sqrt{n^{2}-4 n-2+2 \sqrt{4 n+1}}+\sqrt{n^{2}-4 n-2-2 \sqrt{4 n+1}}\right) \\
= & 2 w_{2,1}-\sqrt{2\left(n^{2}-4 n-2\right)+2 \sqrt{\left(n^{2}-4 n-2\right)^{2}-(2 \sqrt{4 n+1})^{2}}} \\
= & 2 w_{2,1}-\sqrt{2\left(n^{2}-4 n-2\right)+2 n \sqrt{n^{2}-8 n+12}} \\
= & 2\left(w_{2,1}-\sqrt{w_{2,1}^{2}-4}\right) .
\end{aligned}
$$

The fact that $\sqrt{A+B}+\sqrt{A-B}=\sqrt{2 A+2 \sqrt{A^{2}-B^{2}}}$ is used in the third equality. And similarly we have

$$
\begin{aligned}
& \left(w_{2,0}-\sqrt{w_{2,0}^{2}-4}\right)\left(w_{2,1}-\sqrt{w_{2,1}^{2}-4}\right) \\
= & w_{2,0} \cdot w_{2,1}+\sqrt{\left(w_{2,0}^{2}-4\right)\left(w_{2,1}^{2}-4\right)}-w_{2,1} \sqrt{w_{2,0}^{2}-4}-w_{2,0} \sqrt{w_{2,1}^{2}-4} \\
= & 2 n-3+\sqrt{4 n+1}+\sqrt{2 n^{2}-4 n-3-2 n \sqrt{n^{2}-8 n+12}} \\
& +\sqrt{2 n^{2}-4 n-3+2 n \sqrt{n^{2}-8 n+12}}
\end{aligned}
$$

$$
\begin{aligned}
& =2 w_{3,0}+\sqrt{2\left(2 n^{2}-4 n-3\right)+2 \sqrt{\left(2 n^{2}-4 n-3\right)^{2}-\left(2 n \sqrt{n^{2}-8 n+12}\right)^{2}}} \\
& =2 w_{3,0}+\sqrt{2\left(2 n^{2}-4 n-3\right)+2(2 n-3) \sqrt{4 n+1}} \\
& =2\left(w_{3,0}+\sqrt{w_{3,0}^{2}-4}\right) .
\end{aligned}
$$

Finally, we prove

$$
\frac{1}{2}\left(w_{k+1,0}+\sqrt{w_{k+1,0}^{2}-4}\right)=\frac{1}{4}\left(w_{k, 0}+\sqrt{w_{k, 0}^{2}-4}\right)\left(w_{k, 1}+\sqrt{w_{k, 1}^{2}-4}\right)
$$

or

$$
\begin{align*}
& 8\left(w_{k+1,0}+\sqrt{w_{k+1,0}^{2}-4}\right) \\
= & 4\left(w_{k, 0}+\sqrt{w_{k, 0}^{2}-4}\right)\left(w_{k, 1}+\sqrt{w_{k, 1}^{2}-4}\right) \tag{5}
\end{align*}
$$

where

$$
w_{k, 0}=\frac{1}{2}\left(q_{k-1}+\sqrt{q_{k-1}^{2}-4 q_{k}}\right), \quad w_{k, 1}=\frac{1}{2}\left(q_{k-1}-\sqrt{q_{k-1}^{2}-4 q_{k}}\right) .
$$

Direct calculation gives

$$
\begin{aligned}
& 4\left(w_{k, 0}^{2}-4\right) \\
= & 2 q_{k-1}^{2}-4 q_{k}-16+2 q_{k-1} \sqrt{q_{k-1}^{2}-4 q_{k}} \\
= & 2 q_{k+1}-8+2 q_{k-1} \sqrt{q_{k-1}^{2}-4 q_{k}} \\
= & 2 q_{k+1}-8+2 \sqrt{q_{k+1}^{2}-4 q_{k+2}},
\end{aligned}
$$

where the second and the third equalities follow from Lemma 3(i) and Lemma 2 , respectively. Hence we have

$$
\begin{aligned}
& 2\left(w_{k, 0}+\sqrt{w_{k, 0}^{2}-4}\right) \\
= & q_{k-1}+\sqrt{q_{k-1}^{2}-4 q_{k}}+\sqrt{2 q_{k+1}-8+2 \sqrt{q_{k+1}^{2}-4 q_{k+2}}}, \\
& 2\left(w_{k+1,0}+\sqrt{w_{k+1,0}^{2}-4}\right) \\
= & q_{k}+\sqrt{q_{k}^{2}-4 q_{k+1}}+\sqrt{2 q_{k+2}-8+2 \sqrt{q_{k+2}^{2}-4 q_{k+3}}} .
\end{aligned}
$$

And the similar calculation gives
$2\left(w_{k, 1}+\sqrt{w_{k, 1}^{2}-4}\right)=q_{k-1}-\sqrt{q_{k-1}^{2}-4 q_{k}}+\sqrt{2 q_{k+1}-8-2 \sqrt{q_{k+1}^{2}-4 q_{k+2}}}$.
Let $a=q_{k-1}, b=q_{k-1}^{2}-4 q_{k}, c=2 q_{k+1}-8, d=q_{k+1}^{2}-4 q_{k+2}$. Then

$$
4\left(w_{k, 0}+\sqrt{w_{k, 0}^{2}-4}\right)\left(w_{k, 1}+\sqrt{w_{k, 1}^{2}-4}\right)
$$

$$
\begin{aligned}
& =(a+\sqrt{b}+\sqrt{c+2 \sqrt{d}})(a-\sqrt{b}+\sqrt{c-2 \sqrt{d}}) \\
& =a^{2}-b+\sqrt{c^{2}-4 d}+(a+\sqrt{b}) \sqrt{c-2 \sqrt{d}}+(a-\sqrt{b}) \sqrt{c+2 \sqrt{d}}
\end{aligned}
$$

Since $a^{2}-b=4 q_{k}$ and

$$
\begin{align*}
\sqrt{c^{2}-4 d} & =\sqrt{\left(2 q_{k+1}-8\right)^{2}-4\left(q_{k+1}^{2}-4 q_{k+2}\right)} \\
& =\sqrt{-32 q_{k+1}+64+16 q_{k+2}} \\
& =\sqrt{-32 q_{k+1}+64+16\left(q_{k}^{2}-2 q_{k+1}-4\right)} \tag{6}\\
& =4 \sqrt{q_{k}^{2}-4 q_{k+1}},
\end{align*}
$$

in order to prove (5), it is enough to show that
$4 \sqrt{2 q_{k+2}-8+2 \sqrt{q_{k+2}^{2}-4 q_{k+3}}}=(a+\sqrt{b}) \sqrt{c-2 \sqrt{d}}+(a-\sqrt{b}) \sqrt{c+2 \sqrt{d}}$
or, by squaring both sides,

$$
\begin{align*}
& 16\left(2 q_{k+2}-8+2 \sqrt{q_{k+2}^{2}-4 q_{k+3}}\right) \\
= & ((a+\sqrt{b}) \sqrt{c-2 \sqrt{d}}+(a-\sqrt{b}) \sqrt{c+2 \sqrt{d}})^{2} . \tag{7}
\end{align*}
$$

Applying (6) and

$$
\begin{aligned}
& a^{2} b d=q_{k-1}^{2}\left(q_{k-1}^{2}-4 q_{k}\right)\left(q_{k+1}^{2}-4 q_{k+2}\right)=\left(q_{k+1}^{2}-4 q_{k+2}\right)^{2} \quad \text { and } \\
& a^{2}+b=2 q_{k-1}^{2}-4 q_{k}=2\left(q_{k-1}^{2}-2 q_{k}\right)=2\left(q_{k+1}+4\right)
\end{aligned}
$$

in the following calculation, we see that the expansion of right side of (7) is equal to

$$
\begin{aligned}
& 2\left(a^{2}+b\right) c-8 \sqrt{a^{2} b d}+2\left(a^{2}-b\right) \sqrt{c^{2}-4 d} \\
= & 2 \cdot 2\left(q_{k+1}+4\right)\left(2 q_{k+1}-8\right)-8\left(q_{k+1}^{2}-4 q_{k+2}\right)+2 \cdot 4 q_{k} \cdot 4 \sqrt{q_{k}^{2}-4 q_{k+1}} \\
= & 16\left(2 q_{k+2}-8+2 \sqrt{q_{k}^{2}\left(q_{k}^{2}-4 q_{k+1}\right)}\right)=16\left(2 q_{k+2}-8+2 \sqrt{q_{k+2}^{2}-4 q_{k+3}}\right)
\end{aligned}
$$

of which last expression is exactly the left side of (7). This completes the proof.

Remarks. Our proof has the advantage of directness, but it would be desirable to have a less computational proof.

If we replace n by z and consider the $q_{k}(z)$ as polynomials in a complex variable, their zero distribution is of interest. For $k \geq 5, k$ odd, the number of zeros in the interval $(2,6)$ seems to follow the Jacobsthal $2 x \pm 1$ sequence $\{1,3,5,11,21,43,85, \ldots\}$. Machine computation also suggests the following.

For k large and odd, the zeros are real, no zeros exceeds 6 , and the zero "density" increases as z goes from 2 to 6 . In small neighborhoods of 2 , there are more zeros less than 2 than greater than 2 . Every zero exceeds $-1 / 4$. Some similar conjectures may be made for k even, except that here the negative zeros seem to be unbounded.

For n large and k even, the $p_{k}(n, x)$ seem to be irreducible, but, for n large and k odd, the $p_{k}(n, x)$ seem to have remarkable factorizations precisely when $n=t(t+1)$. For example,

$$
\begin{aligned}
p_{1}(n, z)= & \left(z^{2}+t z+1\right)\left(z^{2}-(t+1) z+1\right) \\
p_{3}(n, z)= & \left(z^{2}-\left(t^{2}-2\right) z+1\right)\left(z^{2}-\left(t^{2}+2 t-1\right) z+1\right) \\
p_{5}(n, z)= & \left(z^{2}-\left(t^{4}-4 t^{2}+2\right) z+1\right)\left(z^{2}-\left(t^{4}+4 t^{3}+2 t^{2}-4 t-1\right) z+1\right) \\
p_{7}(n, z)= & \left(z^{2}-\left(t^{8}-8 t^{6}+20 t^{4}-16 t^{2}+2\right) z+1\right) \\
& \left(z^{2}-\left(t^{8}+8 t^{7}+20 t^{6}+8 t^{5}-30 t^{4}-24 t^{3}+12 t^{2}+8 t-1\right) z+1\right),
\end{aligned}
$$

and so on.
Acknowledgment. The authors wish to thank to Professor Kenneth B. Stolarsky who gave us the conjecture that is now Theorem 1.

References

[1] T. Sheil-Small, Complex Polynomials, Cambridge Studies in Advaced Mathematics 73, Cambridge University Press, Cambridge, 2002.

Jaegug Bae
Department of Applied Mathematics
College of Engineering
Korea Maritime University
Pusan 606-791, Korea
E-mail address: jgbae@hhu.ac.kr
Seon-Hong Kim
Department of Mathematics
Sookmyung Women's University
Seoul 140-742, Korea
E-mail address: shkim17@sookmyung.ac.kr

[^0]: Received April 25, 2012.
 2010 Mathematics Subject Classification. Primary 11B83; Secondary 30C15.
 Key words and phrases. self-reciprocal polynomials, polynomials, sequences.
 *This research was supported by the Sookmyung Women's University Research Grants 2012.

