• Title/Summary/Keyword: Pyrolysis Reactor

Search Result 180, Processing Time 0.028 seconds

A Numerical Study on Pyrolysis of Trichloroethane for Reactor geometry design (TCE 열분해 반응기의 형상 설계를 위한 수치해석적 연구)

  • La, Seung-Hyuck;Kang, Kyung-Tae;Kim, Sang-Young;Hwang, Jung-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.106-110
    • /
    • 2002
  • Trichlorethane (TCE) is known as one of major carcinogens. TCE is difficult to be incinerated environmentally friendly, so pyrolysis is suggested for TCE treatment. In this study, we examined effects of cylinder-type pyrolysis reactor design parameters like existence of baffle inside reactor and reactor operating condition like heating reactor wall temperature and residence time numerically using CFX 4.3, a commercial computational fluid dynamic program.

  • PDF

CPFD Simulation for Fast Pyrolysis Reaction of Biomass in a Conical Spouted Bed Reactor using Multiphase-particle in Cell Approach (Multiphase-Particle in Cell 해석 기법을 이용한 원뿔형 분사층 반응기 내 바이오매스의 급속열분해 반응 전산해석)

  • Park, Hoon Chae;Choi, Hang Seok
    • Journal of Korea Society of Waste Management
    • /
    • v.34 no.7
    • /
    • pp.685-696
    • /
    • 2017
  • This study focuses on computational particle fluid dynamics (CPFD) modeling for the fast pyrolysis of biomass in a conical spouted bed reactor. The CPFD simulation was conducted to understand the hydrodynamics, heat transfer, and biomass fast pyrolysis reaction of the conical spouted bed reactor and the multiphase-particle in cell (MP-PIC) model was used to investigate the fast pyrolysis of biomass in a conical spouted bed reactor. A two-stage semi-global kinetics model was applied to model the fast pyrolysis reaction of biomass and the commercial code (Barracuda) was used in simulations. The temperature of solid particles in a conical spouted bed reactor showed a uniform temperature distribution along the reactor height. The yield of fast pyrolysis products from the simulation was compared with the experimental data; the yield of fast pyrolysis products was 74.1wt.% tar, 17.4wt.% gas, and 8.5wt.% char. The comparison of experimental measurements and model predictions shows the model's accuracy. The CPFD simulation results had great potential to aid the future design and optimization of the fast pyrolysis process for biomass.

Design and Commissioning on Waste Tire Pyrolysis Demonstration Plant with Disk Moving Tube Reactor System (디스크이동식 폐타이어 열분해 실증설비 설계와 시운전)

  • Kim, Seong-Yeon;Kim, Ki-Kyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.456-459
    • /
    • 2008
  • The 10t/d pyrolysis demonstration plant for waste tire recycling have been constructed and operated for commissioning of the plant. The plant have the tube reactor with chain conveyer attached disk. The reactor temperature is 500$\sim$600deg.C and pressure is -80$\sim$-100mmHg. Non-condensable gas is used as fuel for pyrolysis heat source.

  • PDF

Fast Pyrolysis Characteristics of Jatropha Curcas L. Seed Cake with Respect to Cone Angle of Spouted Bed Reactor (분사층 반응기의 원뿔각에 따른 Jatropha Curcas L. Seed Cake의 급속열분해 특성)

  • Park, Hoon Chae;Lee, Byeong-Kyu;Kim, Hyo Sung;Choi, Hang Seok
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.161-167
    • /
    • 2019
  • Several types of reactors have been used during the past decade to perform fast pyrolysis of biomass. Among the developed fast pyrolysis reactors, fluidized bed reactors have been widely used in the fast pyrolysis process. In recent years, experimental studies have been conducted on the characteristics of biomass fast pyrolysis in a spouted bed reactor. The fluidization characteristics of a spouted bed reactor are influenced by particle properties, fluid jet velocity, and the structure of the core and annulus. The geometry of the spouted bed reactor is the main factor determining the structure of the core and annulus. Accordingly, to optimize the design of a spouted bed reactor, it is necessary to study the pyrolysis characteristics of biomass. However, no detailed investigations have been made of the fast pyrolysis characteristics of biomass in accordance with the geometry of the spouted bed reactor. In this study, fast pyrolysis experiments using Jatropha curcas L. seed shell cake were conducted in a conical spouted bed reactor to study the effects of reaction temperature and reactor cone angle on the product yield and pyrolysis oil quality. The highest energy yield of pyrolysis oil obtained was 63.9% with a reaction temperature of $450^{\circ}C$ and reactor cone angle of $44^{\circ}$. The results showed that the reaction temperature and reactor cone angle affected the quality of the pyrolysis oil.

THE FAST PYROLYSIS CHARACTERISTICS OF LIGNOCELLULOSIC BIOMASS IN A BUBBLING FLUIDIZED BED REACTOR (기포 유동층 반응기내 목질계 바이오매스의 급속열분해 특성)

  • Choi, Hang-Seok
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.94-101
    • /
    • 2011
  • The fast pyrolysis characteristics of lignocellulosic biomass are investigated for a bubbling fluidized bed reactor by means of computational fluid dynamics (CFD). To simulate multiphase reacting flows for gases and solids, an Eulerian-Eulerian approach is applied. Attention is paid for the primary and secondary reactions affected by gas-solid flow field. From the result, it is scrutinized that fast pyrolysis reaction is promoted by chaotic bubbling motion of the multiphase flow enhancing the mixing of solid particles. In particular, vortical flow motions around gas bubbles play an important role for solid mixing and consequent fast pyrolysis reaction. Discussion is made for the time-averaged pyrolysis reaction rates together with time-averaged flow quantities which show peculiar characteristics according to local transverse location in a bubbling fluidized bed reactor.

Analysis on the Pyrolysis Characteristics of Waste Plastics Using Plug Flow Reactor Model (Plug Flow Reactor 모델을 이용한 폐플라스틱의 열분해 특성 해석)

  • Sangkyu, Choi;Yeonseok, Choi;Yeonwoo, Jeong;Soyoung, Han;Quynh Van, Nguyen
    • New & Renewable Energy
    • /
    • v.18 no.4
    • /
    • pp.12-21
    • /
    • 2022
  • The pyrolysis characteristics of high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP) were analyzed numerically using a 1D plug flow reactor (PFR) model. A lumped kinetic model was selected to simplify the pyrolysis products as wax, oil, and gas. The simulation was performed in the 400-600℃ range, and the plastic pyrolysis and product generation characteristics with respect to time were compared at various temperatures. It was found that plastic pyrolysis accelerates rapidly as the temperature rises. The amounts of the pyrolysis products wax and oil increase and then decrease with time, whereas the amount of gas produced increases continuously. In LDPE pyrolysis, the pyrolysis time was longer than that observed for other plastics at a specified temperature, and the amount of wax generated was the greatest. The maximum mass fraction of oil was obtained in the order of HDPE, PP, and LDPE at a specified temperature, and it decreased with temperature. Although the 1D model adopted in this study has a limitation in that it does not include material transport and heat transfer phenomena, the qualitative results presented herein could provide base data regarding various types of plastic pyrolysis to predict the product characteristics. These results can in turn be used when designing pyrolysis reactors.

Preparation of Green-Light Emitting BAM:Mn Phosphor Particles by High Temperature Spray Pyrolysis (고온 분무열분해 공정에 의한 녹색 발광의 BAM:Mn 형광체 합성)

  • Ju Seo Hee;Koo Hye Young;Kim Do Youp;Kang Yun Chan
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.496-502
    • /
    • 2005
  • Green-light emitting $BaMgAl_{10}O_{19}:Mn^{2+}$ (BAM:Mn) phosphor particles were prepared by spray Pyrolysis. The effect of reactor temperature and flow rate of carrier gas in the spray Pyrolysis on the morphology, crystallinity and photoluminescence characteristics under vacuum ultraviolet were investigated. The morphology of the as-Prepared Particles obtained by spray Pyrolysis had spherical shape and non-aggregation characteristics regardless of the reactor temperature. The spherical shape of the as-prepared Particles obtained by spray pyrolysis at low temperature disappeared after Post-treatment. On the other hand the as-Prepared Particles obtained by spray Pyrolysis at $1600^{\circ}C$ maintained spherical shape and non-aggregation characteristics after post-treatment at $1400^{\circ}C$ for 3 h under reducing atmosphere. The BAM:Mn Phosphor Particles Prepared by spray Pyrolysis at different reactor temperatures had pure crystal structure and high photoluminescence intensities under vacuum ultraviolet after post-treatment. BAM:Mn phosphor particles prepared by spray Pyrolysis at low How rate of carrier gas had complete spherical shape and filed morphology and high photoluminescence intensity after post-treatment under reducing atmosphere.

Pyrolysis and combustion characteristics of dried sewage sludge in a fixed bed reactor (건조 하수 슬러지의 열분해 및 고정층 연소 특성 연구)

  • Kim, Minsu;Lee, Yongwoon;Park, Jinje;Ryu, Changkook
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.29-32
    • /
    • 2014
  • The practical route for disposal of sewage sludge becomes energy recovery by combustion after its ocean dumping is banned in 2012 in Korea. Due to the high moisture content, however, sewage sludge is required to be dried before transport and combustion. In this study, pyrolysis and combustion characteristics of dried sewage sludge was investigated in a small-scale fixed bed reactor in order to provide fundamental data for energy recovery of the fuel. As the first step of combustion, the primary products of pyrolysis were analyzed in a fixed bed reactor for the condensable volatiles (tar), non-condensable gases, and char. For the combustion characteristics, another fixed bed reactor was constructed to monitor the weight and temperature of the fuel particles during ignition and combustion under different air flow rates. The test results were used to derive the ignition and burning rates.

  • PDF

Result and Assignment on Development of Waste Tire Pyrolysis Demonstration Plant with Disk Moving Tube Reactor System (디스크이동식 폐타이어 열분해 실증공정 개발의 성과와 과제)

  • Kim, Seong-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.325-328
    • /
    • 2009
  • The 10t/d pyrolysis demonstration plant have been developed for waste tire recycling treatment and value added commercialization. The initial plant model had been started under 2.4t/d capacity with continuous operation, and the commercial plant has been achieved to the 120t/d based on demonstration plant having the tube reactor with chain conveyer attached disk. The next generation pyrolysis plant for waste tire is reviewed and the assignment for plant development is presented briefly.

  • PDF

Waste Tire Pyrolysis Commercialization Plant for 120t/d Treatment (120톤/일 처리 폐타이어 열분해 상업화 설비 개발)

  • Kim, Seong-Yeon;Kim, Ki-Kyeong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.138-141
    • /
    • 2008
  • The 120t/d pyrolysis commercial plant for waste tire recycling have been constructed in Malaysia and is going to be operated. The plant have the tube reactor with chain conveyer attached disk developed in demonstration research stage. The reactor temperature for commercial plant is about 500deg.C and reactor inside pressure is -100$\sim$-120mmHg. Non-condensable gas is used as fuel for pyrolysis heat source, and the exhausted heat is recovered for cogeneration to produce steam and electric power of 600kw.

  • PDF