DOI QR코드

DOI QR Code

Analysis on the Pyrolysis Characteristics of Waste Plastics Using Plug Flow Reactor Model

Plug Flow Reactor 모델을 이용한 폐플라스틱의 열분해 특성 해석

  • Sangkyu, Choi (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials) ;
  • Yeonseok, Choi (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials) ;
  • Yeonwoo, Jeong (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials) ;
  • Soyoung, Han (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials) ;
  • Quynh Van, Nguyen (Department of Environment.Energy Machinery, University of Science and Technology)
  • Received : 2022.11.11
  • Accepted : 2022.12.20
  • Published : 2022.12.25

Abstract

The pyrolysis characteristics of high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP) were analyzed numerically using a 1D plug flow reactor (PFR) model. A lumped kinetic model was selected to simplify the pyrolysis products as wax, oil, and gas. The simulation was performed in the 400-600℃ range, and the plastic pyrolysis and product generation characteristics with respect to time were compared at various temperatures. It was found that plastic pyrolysis accelerates rapidly as the temperature rises. The amounts of the pyrolysis products wax and oil increase and then decrease with time, whereas the amount of gas produced increases continuously. In LDPE pyrolysis, the pyrolysis time was longer than that observed for other plastics at a specified temperature, and the amount of wax generated was the greatest. The maximum mass fraction of oil was obtained in the order of HDPE, PP, and LDPE at a specified temperature, and it decreased with temperature. Although the 1D model adopted in this study has a limitation in that it does not include material transport and heat transfer phenomena, the qualitative results presented herein could provide base data regarding various types of plastic pyrolysis to predict the product characteristics. These results can in turn be used when designing pyrolysis reactors.

Keywords

Acknowledgement

본 연구는 2022년 중소벤처기업부의 "연속 투입과 배출이 가능하고 폐수와 미세먼지 발생이 없는 폐플라스틱 열분해 유화 공정 개발"(과제번호: S3264002)의 일환으로 수행되었으며 이에 감사드립니다.

References

  1. Lee, S.H., 2019, "Current status of plastic recycling in Korea", J. of Korean Inst. of Resources Recycling, 28(6), 3-8. https://doi.org/10.7844/kirr.2019.28.6.3
  2. Cho, Y.J., and Cho, B.G., 2020, "Status and future prospects for plastics recycling", J. of Korean Inst. of Resources Recycling, 29(4), 31-44. https://doi.org/10.7844/kirr.2020.29.4.31
  3. Lee, K.J., 2015, "The reaction kinetic study of SRF and industrial waste using TGA (Thermo Gravimetric Analysis)", New. Renew. Energy, 11(1), 20-26. https://doi.org/10.7849/ksnre.2015.03.1.020
  4. Chae, J.S., Yang, S.J., Kim, S.W., Lee, J.H., and Ohm, T.I., 2020, "A study on the combustion characteristics of food waste using the experimental apparatus for combustibility", New. Renew. Energy, 16(2), 47-53. https://doi.org/10.7849/ksnre.2020.2061
  5. Yoon, H.C., Cho, S.H., Lee, D.J., Moon, G.Y., and Cho, S.H., 2016, "A study on the optimal operating condition of a Dual Fluidized-Bed (DFB) with biomass and SRF", New. Renew. Energy, 12(4), 77-87. https://doi.org/10.7849/ksnre.2016.12.12.4.077
  6. Dogu, O., Pelucchi, M., Van de Vijver, R., Van Steenberge, P.H.M., D'hooge, D.R., Cuoci, A, Mehl, M., Frassoldati, A., Faravelli, T., and Van Geem, K.M., 2021, "The chemistry of chemical recycling of solid plastic waste via pyrolysis and gasification: State-of-the-art, challenges, and future directions", Prog. Energy Combus. Scie., 84, 100901. https://doi.org/10.1016/j.pecs.2020.100901
  7. Ranzi, E., Dente, M., Faravelli, T., Bozzano, G., Fabini, S., Nava, R., Cozzani, V., and Tognotti, L., 1997, "Kinetic modeling of polyethylene and polypropylene thermal degradation", J. Anal. Appl. Pyrolysis., 40-41, 305-319. https://doi.org/10.1016/S0165-2370(97)00032-6
  8. Westerhout, R.W.J., Waanders, J., Kuipers, J.A.M., and van Swaaij, W.P.M., 1997, "Kinetics of the lowtemperature pyrolysis of polyethene, polypropene, and polystyrene modeling, experimental determination, and comparison with literature models and data", Ind. Eng. Chem. Res., 36(6), 1955-1964. https://doi.org/10.1021/ie960501m
  9. Bockhorn, H., Hornung, A., Hornung, U., and Schawaller, D., 1999, "Kinetic study on the thermal degradation of polypropylene and polyethylene", J. Anal. Appl. Pyrolysis., 48(2), 93-109. https://doi.org/10.1016/S0165-2370(98)00131-4
  10. Kruse, T.M., Wong, H.W., and Broadbelt, L.J., 2003, "Mechanistic modeling of polymer pyrolysis: Polypropylene", Macromolecules, 36(25), 9594-9607. https://doi.org/10.1021/ma030322y
  11. Elordi, G., Lopez, G., Olazar, M., Aguado, R., and Bilbao, J., 2007, "Product distribution modelling in the thermal pyrolysis of high density polyethylene", J. Hazard. Mater., 144(3), 708-714. https://doi.org/10.1016/j.jhazmat.2007.01.101
  12. Costa, P.A., Pinto, F.J., Ramos, A.M., Gulyurtlu, I.K., Cabrita, I.A., and Bernardo, M.S., 2007, "Kinetic evaluation of the pyrolysis of polyethylene waste", Energy Fuels, 21(5), 2489-2498. https://doi.org/10.1021/ef070115p
  13. Nemeth, A., Blazso, M., Baranyai, P., and Vidoczy, T., 2008, "Thermal degradation of polyethylene modeled on tetracontane", J. Anal. Appl. Pyrolysis, 81(2), 237-242. https://doi.org/10.1016/j.jaap.2007.11.012
  14. Levine, S.E., and Broadbelt, L.J., 2009, "Detailed mechanistic modeling of high-density polyethylene pyrolysis: Low molecular weight product evolution", Polymer Degradation and Stability, 94(5), 810-822. https://doi.org/10.1016/j.polymdegradstab.2009.01.031
  15. Costa, P., Pinto, F., Ramos, A.M., Gulyurtlu, I., Cabrita, I., and Bernardo, M.S., 2010, "Study of the pyrolysis kinetics of a mixture of polyethylene, polypropylene, and polystyrene", Energy Fuels, 24(12), 6239-6247. https://doi.org/10.1021/ef101010n
  16. Al-Salem, S.M., and Lettieri, P., 2010, "Kinetic study of high density polyethylene (HDPE) pyrolysis", Chemical Engineering Research and Design, 88(12), 1599-1606. https://doi.org/10.1016/j.cherd.2010.03.012
  17. Ding, F., Xiong, L., Luo, C., Zhang, H., and Chen, X., 2012, "Kinetic study of low-temperature conversion of plastic mixtures to value added products", J. Anal. Appl. Pyrolysis., 94, 83-90. https://doi.org/10.1016/j.jaap.2011.11.013
  18. Gascoin, N., Navarro-Rodriguez, A., Gillard, P., and Mangeot, A., 2012, "Kinetic modelling of high density polyethylene pyrolysis: Part 1. Comparison of existing models", Polymer Degradation and Stability, 97(8), 1466-1474. https://doi.org/10.1016/j.polymdegradstab.2012.05.008
  19. Gascoin, N., Navarro-Rodriguez, A., Fau, G., and Gillard, P., 2012, "Kinetic modelling of High Density PolyEthylene pyrolysis: Part 2. Reduction of existing detailed mechanism", Polymer Degradation and Stability, 97(7), 1142-1150. https://doi.org/10.1016/j.polymdegradstab.2012.04.002
  20. Csukas, B., Varga, M., Miskolczi, N., Balogh, S., Angyal, A., and Bartha, L., 2013, "Simplified dynamic simulation model of plastic waste pyrolysis in laboratory and pilot scale tubular reactor", Fuel Process. Technol., 106, 186-200. https://doi.org/10.1016/j.fuproc.2012.07.024
  21. Zhang, H.R., Ding, F., Luo, C.R., and Chen, X.D., 2015, "Kinetics of the low temperature conversion of polypropylene to polypropylene wax", Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(15), 1612-1619. https://doi.org/10.1080/15567036.2011.631974
  22. Eidesen, H., Khawaja, H., and Jackson, S., 2018, "Simulation of the HDPE pyrolysis process", Int. J. Multiphysics, 12(1), 79-88.
  23. Lechleitner, A.E., Schubert, T., Hofer, W., and Lehner, M., 2021, "Lumped kinetic modeling of polypropylene and polyethylene co-pyrolysis in tubular reactors", Processes, 9(1), 34. https://doi.org/10.3390/pr9010034
  24. Harmon, R.E., SriBala, G., Broadbelt, L.J., and Burnham, A.K., 2021, "Insight into polyethylene and polypropylene pyrolysis: Global and mechanistic models", Energy Fuels, 35(8), 6765-6775. https://doi.org/10.1021/acs.energyfuels.1c00342
  25. Kulas, D.G., Zolghadr, A., and Shonnard, D., 2021, "Micropyrolysis of polyethylene and polypropylene prior to bioconversion: The effect of reactor temperature and vapor residence time on product distribution", ACS Sustainable Chem. Eng., 9(43), 14443-14450. https://doi.org/10.1021/acssuschemeng.1c04705
  26. Jiang, G., Fenwick, R., Seville, J., Mahood, H.B., Thorpe, R.B., Bhattacharya, S., Sanchez Monsalve, D.A., and Leeke, G.A., 2022, "Lumped kinetic modelling of polyolefin pyrolysis: A non-isothermal method to estimate rate constants", J. Anal. Appl. Pyrolysis., 164, 105530. https://doi.org/10.1016/j.jaap.2022.105530
  27. Goodwin, D.G., Moffat, H.K., Schoegl, I., Speth, R.L., and Weber, B.W.. 2022, "Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes", Version 2.6.0., Accessed 22 November 2022, https://www.cantera.org.
  28. Jung, S.H., Cho, M.H., Kang, B.S., and Kim, J.S., 2010, "Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor", Fuel Process. Technol., 91(3), 277-284. https://doi.org/10.1016/j.fuproc.2009.10.009
  29. Sharuddin, S.D.A., Abnisa, F., Daud, W.M.A.W., and Aroua, M.K., 2016, "A review on pyrolysis of plastic wastes", Energy Convers. Manag., 115, 308-326 . https://doi.org/10.1016/j.enconman.2016.02.037
  30. Park, J.W., Oh, S.C., Lee, H.P., Kim, H.T., and Yoo, K.O., 2000, "Kinetic analysis of thermal decomposition of polymer using a dynamic model", Korean J. Chem. Eng., 17(5), 489-496. https://doi.org/10.1007/BF02707154
  31. Kayacan, I., and Dogan, O.M., 2008, "Pyrolysis of low and high density polyethylene. Part I: Non-isothermal pyrolysis kinetics", Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 30(5), 385-391. https://doi.org/10.1080/15567030701457079
  32. Aboulkas, A., El harfi, K., and El Bouadili, A., 2010, "Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms", Energy Conversion and Management, 51(7), 1363-1369. https://doi.org/10.1016/j.enconman.2009.12.017
  33. Saad, J.Md., Williams, P.T., Zhang, Y.S., Yao, D., Yang, H., and Zhou, H., 2021, "Comparison of waste plastics pyrolysis under nitrogen and carbon dioxide atmospheres: A thermogravimetric and kinetic study", J. Anal. Appl. Pyrolysis., 156, 105135. https://doi.org/10.1016/j.jaap.2021.105135