Browse > Article
http://dx.doi.org/10.7849/ksnre.2022.0037

Analysis on the Pyrolysis Characteristics of Waste Plastics Using Plug Flow Reactor Model  

Sangkyu, Choi (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials)
Yeonseok, Choi (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials)
Yeonwoo, Jeong (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials)
Soyoung, Han (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials)
Quynh Van, Nguyen (Department of Environment.Energy Machinery, University of Science and Technology)
Publication Information
New & Renewable Energy / v.18, no.4, 2022 , pp. 12-21 More about this Journal
Abstract
The pyrolysis characteristics of high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP) were analyzed numerically using a 1D plug flow reactor (PFR) model. A lumped kinetic model was selected to simplify the pyrolysis products as wax, oil, and gas. The simulation was performed in the 400-600℃ range, and the plastic pyrolysis and product generation characteristics with respect to time were compared at various temperatures. It was found that plastic pyrolysis accelerates rapidly as the temperature rises. The amounts of the pyrolysis products wax and oil increase and then decrease with time, whereas the amount of gas produced increases continuously. In LDPE pyrolysis, the pyrolysis time was longer than that observed for other plastics at a specified temperature, and the amount of wax generated was the greatest. The maximum mass fraction of oil was obtained in the order of HDPE, PP, and LDPE at a specified temperature, and it decreased with temperature. Although the 1D model adopted in this study has a limitation in that it does not include material transport and heat transfer phenomena, the qualitative results presented herein could provide base data regarding various types of plastic pyrolysis to predict the product characteristics. These results can in turn be used when designing pyrolysis reactors.
Keywords
Pyrolysis; High density polyethylene; Low density polyethylene; Polypropylene; Plug flow reactor; Lumped kinetic model;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Westerhout, R.W.J., Waanders, J., Kuipers, J.A.M., and van Swaaij, W.P.M., 1997, "Kinetics of the lowtemperature pyrolysis of polyethene, polypropene, and polystyrene modeling, experimental determination, and comparison with literature models and data", Ind. Eng. Chem. Res., 36(6), 1955-1964.   DOI
2 Bockhorn, H., Hornung, A., Hornung, U., and Schawaller, D., 1999, "Kinetic study on the thermal degradation of polypropylene and polyethylene", J. Anal. Appl. Pyrolysis., 48(2), 93-109.   DOI
3 Kruse, T.M., Wong, H.W., and Broadbelt, L.J., 2003, "Mechanistic modeling of polymer pyrolysis: Polypropylene", Macromolecules, 36(25), 9594-9607.   DOI
4 Elordi, G., Lopez, G., Olazar, M., Aguado, R., and Bilbao, J., 2007, "Product distribution modelling in the thermal pyrolysis of high density polyethylene", J. Hazard. Mater., 144(3), 708-714.   DOI
5 Costa, P.A., Pinto, F.J., Ramos, A.M., Gulyurtlu, I.K., Cabrita, I.A., and Bernardo, M.S., 2007, "Kinetic evaluation of the pyrolysis of polyethylene waste", Energy Fuels, 21(5), 2489-2498.   DOI
6 Nemeth, A., Blazso, M., Baranyai, P., and Vidoczy, T., 2008, "Thermal degradation of polyethylene modeled on tetracontane", J. Anal. Appl. Pyrolysis, 81(2), 237-242.   DOI
7 Levine, S.E., and Broadbelt, L.J., 2009, "Detailed mechanistic modeling of high-density polyethylene pyrolysis: Low molecular weight product evolution", Polymer Degradation and Stability, 94(5), 810-822.   DOI
8 Costa, P., Pinto, F., Ramos, A.M., Gulyurtlu, I., Cabrita, I., and Bernardo, M.S., 2010, "Study of the pyrolysis kinetics of a mixture of polyethylene, polypropylene, and polystyrene", Energy Fuels, 24(12), 6239-6247.   DOI
9 Al-Salem, S.M., and Lettieri, P., 2010, "Kinetic study of high density polyethylene (HDPE) pyrolysis", Chemical Engineering Research and Design, 88(12), 1599-1606.   DOI
10 Ding, F., Xiong, L., Luo, C., Zhang, H., and Chen, X., 2012, "Kinetic study of low-temperature conversion of plastic mixtures to value added products", J. Anal. Appl. Pyrolysis., 94, 83-90.   DOI
11 Gascoin, N., Navarro-Rodriguez, A., Gillard, P., and Mangeot, A., 2012, "Kinetic modelling of high density polyethylene pyrolysis: Part 1. Comparison of existing models", Polymer Degradation and Stability, 97(8), 1466-1474.   DOI
12 Gascoin, N., Navarro-Rodriguez, A., Fau, G., and Gillard, P., 2012, "Kinetic modelling of High Density PolyEthylene pyrolysis: Part 2. Reduction of existing detailed mechanism", Polymer Degradation and Stability, 97(7), 1142-1150.   DOI
13 Csukas, B., Varga, M., Miskolczi, N., Balogh, S., Angyal, A., and Bartha, L., 2013, "Simplified dynamic simulation model of plastic waste pyrolysis in laboratory and pilot scale tubular reactor", Fuel Process. Technol., 106, 186-200.   DOI
14 Zhang, H.R., Ding, F., Luo, C.R., and Chen, X.D., 2015, "Kinetics of the low temperature conversion of polypropylene to polypropylene wax", Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(15), 1612-1619.   DOI
15 Eidesen, H., Khawaja, H., and Jackson, S., 2018, "Simulation of the HDPE pyrolysis process", Int. J. Multiphysics, 12(1), 79-88.
16 Lechleitner, A.E., Schubert, T., Hofer, W., and Lehner, M., 2021, "Lumped kinetic modeling of polypropylene and polyethylene co-pyrolysis in tubular reactors", Processes, 9(1), 34.   DOI
17 Harmon, R.E., SriBala, G., Broadbelt, L.J., and Burnham, A.K., 2021, "Insight into polyethylene and polypropylene pyrolysis: Global and mechanistic models", Energy Fuels, 35(8), 6765-6775.   DOI
18 Goodwin, D.G., Moffat, H.K., Schoegl, I., Speth, R.L., and Weber, B.W.. 2022, "Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes", Version 2.6.0., Accessed 22 November 2022, https://www.cantera.org.
19 Kulas, D.G., Zolghadr, A., and Shonnard, D., 2021, "Micropyrolysis of polyethylene and polypropylene prior to bioconversion: The effect of reactor temperature and vapor residence time on product distribution", ACS Sustainable Chem. Eng., 9(43), 14443-14450.   DOI
20 Jiang, G., Fenwick, R., Seville, J., Mahood, H.B., Thorpe, R.B., Bhattacharya, S., Sanchez Monsalve, D.A., and Leeke, G.A., 2022, "Lumped kinetic modelling of polyolefin pyrolysis: A non-isothermal method to estimate rate constants", J. Anal. Appl. Pyrolysis., 164, 105530.   DOI
21 Jung, S.H., Cho, M.H., Kang, B.S., and Kim, J.S., 2010, "Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor", Fuel Process. Technol., 91(3), 277-284.   DOI
22 Sharuddin, S.D.A., Abnisa, F., Daud, W.M.A.W., and Aroua, M.K., 2016, "A review on pyrolysis of plastic wastes", Energy Convers. Manag., 115, 308-326 .   DOI
23 Park, J.W., Oh, S.C., Lee, H.P., Kim, H.T., and Yoo, K.O., 2000, "Kinetic analysis of thermal decomposition of polymer using a dynamic model", Korean J. Chem. Eng., 17(5), 489-496.   DOI
24 Kayacan, I., and Dogan, O.M., 2008, "Pyrolysis of low and high density polyethylene. Part I: Non-isothermal pyrolysis kinetics", Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 30(5), 385-391.   DOI
25 Aboulkas, A., El harfi, K., and El Bouadili, A., 2010, "Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms", Energy Conversion and Management, 51(7), 1363-1369.   DOI
26 Lee, K.J., 2015, "The reaction kinetic study of SRF and industrial waste using TGA (Thermo Gravimetric Analysis)", New. Renew. Energy, 11(1), 20-26.   DOI
27 Saad, J.Md., Williams, P.T., Zhang, Y.S., Yao, D., Yang, H., and Zhou, H., 2021, "Comparison of waste plastics pyrolysis under nitrogen and carbon dioxide atmospheres: A thermogravimetric and kinetic study", J. Anal. Appl. Pyrolysis., 156, 105135.   DOI
28 Lee, S.H., 2019, "Current status of plastic recycling in Korea", J. of Korean Inst. of Resources Recycling, 28(6), 3-8.   DOI
29 Cho, Y.J., and Cho, B.G., 2020, "Status and future prospects for plastics recycling", J. of Korean Inst. of Resources Recycling, 29(4), 31-44.   DOI
30 Chae, J.S., Yang, S.J., Kim, S.W., Lee, J.H., and Ohm, T.I., 2020, "A study on the combustion characteristics of food waste using the experimental apparatus for combustibility", New. Renew. Energy, 16(2), 47-53.   DOI
31 Yoon, H.C., Cho, S.H., Lee, D.J., Moon, G.Y., and Cho, S.H., 2016, "A study on the optimal operating condition of a Dual Fluidized-Bed (DFB) with biomass and SRF", New. Renew. Energy, 12(4), 77-87.   DOI
32 Dogu, O., Pelucchi, M., Van de Vijver, R., Van Steenberge, P.H.M., D'hooge, D.R., Cuoci, A, Mehl, M., Frassoldati, A., Faravelli, T., and Van Geem, K.M., 2021, "The chemistry of chemical recycling of solid plastic waste via pyrolysis and gasification: State-of-the-art, challenges, and future directions", Prog. Energy Combus. Scie., 84, 100901.   DOI
33 Ranzi, E., Dente, M., Faravelli, T., Bozzano, G., Fabini, S., Nava, R., Cozzani, V., and Tognotti, L., 1997, "Kinetic modeling of polyethylene and polypropylene thermal degradation", J. Anal. Appl. Pyrolysis., 40-41, 305-319.   DOI