DOI QR코드

DOI QR Code

Fast Pyrolysis Characteristics of Jatropha Curcas L. Seed Cake with Respect to Cone Angle of Spouted Bed Reactor

분사층 반응기의 원뿔각에 따른 Jatropha Curcas L. Seed Cake의 급속열분해 특성

  • Park, Hoon Chae (Department of Environmental Engineering, Yonsei University) ;
  • Lee, Byeong-Kyu (Department of Environmental Engineering, Yonsei University) ;
  • Kim, Hyo Sung (Department of Environmental Engineering, Yonsei University) ;
  • Choi, Hang Seok (Department of Environmental Engineering, Yonsei University)
  • Received : 2019.03.20
  • Accepted : 2019.04.10
  • Published : 2019.06.30

Abstract

Several types of reactors have been used during the past decade to perform fast pyrolysis of biomass. Among the developed fast pyrolysis reactors, fluidized bed reactors have been widely used in the fast pyrolysis process. In recent years, experimental studies have been conducted on the characteristics of biomass fast pyrolysis in a spouted bed reactor. The fluidization characteristics of a spouted bed reactor are influenced by particle properties, fluid jet velocity, and the structure of the core and annulus. The geometry of the spouted bed reactor is the main factor determining the structure of the core and annulus. Accordingly, to optimize the design of a spouted bed reactor, it is necessary to study the pyrolysis characteristics of biomass. However, no detailed investigations have been made of the fast pyrolysis characteristics of biomass in accordance with the geometry of the spouted bed reactor. In this study, fast pyrolysis experiments using Jatropha curcas L. seed shell cake were conducted in a conical spouted bed reactor to study the effects of reaction temperature and reactor cone angle on the product yield and pyrolysis oil quality. The highest energy yield of pyrolysis oil obtained was 63.9% with a reaction temperature of $450^{\circ}C$ and reactor cone angle of $44^{\circ}$. The results showed that the reaction temperature and reactor cone angle affected the quality of the pyrolysis oil.

바이오매스의 급속열분해를 위하여 지난 수십 년간 다양한 형태의 반응기가 개발되었다. 급속열분해 공정의 반응기는 유동층 반응기가 많이 사용되어 왔으며, 최근에는 분사층 반응기를 이용한 바이오매스의 급속열분해 특성에 대한 연구가 다수의 연구자들에 의해 수행되고 있다. 분사층 반응기의 유동화 특성은 입자의 물리적 특성, 유체 제트의 속도, core와 annulus의 구조에 영향을 받으며, 반응기의 기하학적 구조는 분사층 내부의 core와 annulus 구조를 결정하는 주요 인자이다. 따라서 분사층 반응기의 최적설계를 위해서는 열분해 반응에 영향을 주는 인자에 대한 바이오매스의 급속열분해 특성에 대한 연구가 수행되어야 한다. 하지만 분사층 반응기의 기하학적 구조에 의한 바이오매스의 급속열분해 특성은 자세히 연구되지 않았다. 본 연구에서는 분사층 반응기의 원뿔각과 반응 온도 변화에 따른 Jatropha curcas L. seed shell cake의 급속열분해 실험을 수행하여 분사층 반응기의 최적 형상과 반응 온도를 도출하였다. 실험결과, 열분해 오일의 에너지 수율은 반응 온도 $450^{\circ}C$, 분사층 반응기의 원뿔각 $44^{\circ}$에서 63.9%로 가장 높게 나타났다. 그리고 분사층 반응기 내 고체입자의 열전달과 기체상 열분해 생성물의 체류시간은 원뿔각의 영향을 받아 열분해 생성물의 수율 및 열분해 오일의 품질에 영향을 주는 것으로 나타났다.

Keywords

CJGSB2_2019_v25n2_161_f0001.png 이미지

Figure 1. Schematic diagram of spouted bed.

CJGSB2_2019_v25n2_161_f0002.png 이미지

Figure 2. Photograph of Jatropha curcas L. seed shell cake.

CJGSB2_2019_v25n2_161_f0003.png 이미지

Figure 3. Geometric factors of conical spouted bed reactor.

CJGSB2_2019_v25n2_161_f0004.png 이미지

Figure 4. Schematic diagram of experimental apparatus.

CJGSB2_2019_v25n2_161_f0005.png 이미지

Figure 5. TG and DTG curves of Jatropha curcas L. seed shell cake.

CJGSB2_2019_v25n2_161_f0006.png 이미지

Figure 6. Influence of cone angle and reaction temperature on products yield.

CJGSB2_2019_v25n2_161_f0007.png 이미지

Figure 7. Influence of cone angle and reaction temperature on pyrolysis oil quality.

CJGSB2_2019_v25n2_161_f0008.png 이미지

Figure 8. Influence of cone angle and reaction temperature on energy yield of pyrolysis oil.

Table 1. Physical characteristics of Jatropha curcas L. seed shell cake

CJGSB2_2019_v25n2_161_t0001.png 이미지

Table 2. Experimental conditions

CJGSB2_2019_v25n2_161_t0002.png 이미지

References

  1. Oh, C., and Lee, J. H., "Effect of the Recycling of Non-condensable Gases on the Process of Fast Pyrolysis for Palm Wastes," Clean Technol., 24(3), 233-238 (2018). https://doi.org/10.7464/ksct.2018.24.3.233
  2. Choi, J.-W., Son, D., Suh, D. J., Kim, H, and Lee, Y. W., "Characteristics of Pyrolysis Oils from Saccharina Japonica in an Auger Reactor," Clean Technol., 24(1), 70-76 (2018). https://doi.org/10.7464/KSCT.2018.24.1.070
  3. Brigljevic, B., Woo, H. C., and Liu J., "Process Design and Simulation of Fast Pyrolysis of Brown Seaweed," Clean Technol., 23(4), 435-440 (2017). https://doi.org/10.7464/KSCT.2017.23.4.435
  4. Czernik, A., and Bridgwater, A. V., "Overview of Applications of Biomass Fast Pyrolysis oil," Energ. Fuel., 18, 560-598 (2004). https://doi.org/10.1021/ef0301497
  5. Venderbosch, R. H., and Prins, W., "Fast Pyrolysis Technology Development," Biofuels, Biopro. Biorefin., 4, 178-208 (2010). https://doi.org/10.1002/bbb.205
  6. Bridgwater, A. V., "Review of Fast Pyrolysis of Biomass and Product Upgrading," Biomass Bioenergy, 38, 68-94 (2012). https://doi.org/10.1016/j.biombioe.2011.01.048
  7. Butler, E., Devlin, G., Meier, D., and McDonnell, K., "A Review of Recent Laboratory Research and Commercial Developments in Fast Pyrolysis and Upgrading," Renew. Sustain. Energy Rev., 15, 4171-4186 (2011). https://doi.org/10.1016/j.rser.2011.07.035
  8. Miguel, G. S., Makibar, J., and Fernandez-Akarregi, A. R., "New Advances in the Fast Pyrolysis of Biomass," J. Biobased Mater. Bioenergy., 6, 193-203 (2012).
  9. Aguado, R., Olazar, M., San Jose, M. J., Aguirre, G., and Bilbao, J., "Pyrolysis of Sawdust in a Conical Spouted Bed Reactor. Yields and Product Composition," Ind. Eng. Chem. Res., 39, 1925-1933 (2000). https://doi.org/10.1021/ie990309v
  10. Du, S., Sun, Y., Gamliel, D. P., Valla, J. A., and Bollas, G. M., "Catalytic Pyrolysis of Miscanthus$\times$Giganteus in a Spouted Bed Reactor," Bioresour. Technol., 169, 188-197 (2014). https://doi.org/10.1016/j.biortech.2014.06.104
  11. Alvarez, J., Amutio, M., Lopez, G., Bilbao, J., and Olazar, M., "Fast Co-pyrolysis of Sewage Sludge and Lignocellulosic Biomass in a Conical Spouted Bed Reactor," Fuel, 159, 810-818 (2015). https://doi.org/10.1016/j.fuel.2015.07.039
  12. Amutio, M., Lopez, G., Alvarez, J., Olazar, M., and Bilbao, J., "Fast Pyrolysis of Eucalyptus Waste in a Conical Spouted Bed Reactor," Bioresour. Technol., 194, 225-232 (2015). https://doi.org/10.1016/j.biortech.2015.07.030
  13. Alvarez, J., Lopez, G., Amutio, M., Artetxe, M., Barbarias, I., Arregi, A., Bilbao, J., and Olazar, M., "Characterization of the Bio-oil Obtained by Fast Pyrolysis of Sewage Sludge in a Conical Spouted Bed Reactor," Fuel Process. Technol., 149, 169-175 (2016). https://doi.org/10.1016/j.fuproc.2016.04.015
  14. Kaushal, P., and Tyagi, R., "Steam Assisted Biomass Gasification-an overview," Can. J. Chem. Eng., 90, 1043-1058 (2012). https://doi.org/10.1002/cjce.20594
  15. Epstein, N., and Grace, J. R., "Spouted and Spout-fluid Beds Fundamentals and Applications., Cambridge University Press, New York (2011).
  16. Park, H. C., Lee, B. K., Yoo, H. S., and Choi, H. S., "[TC2015] Fast Pyrolysis Characteristics of Biomass in a Conical Spouted Bed Reactor," Environ. Prog. Sustain., 36, 685-689 (2017). https://doi.org/10.1002/ep.12476
  17. Vamvuka, D., Kakaras, E., Kastanaki, E., and Grammelis, P., "Pyrolysis Characteristics and Kinetics of Biomass Residuals Mixtures with Lignite," Fuel., 82, 1949-1960 (2003). https://doi.org/10.1016/S0016-2361(03)00153-4
  18. Bridgwater, A. V., Meier, D., and Radlein, D., "An Overview of Fast Pyrolysis of Biomass," Org. Geochem., 30, 1479-1493 (1999). https://doi.org/10.1016/S0146-6380(99)00120-5
  19. Akhtar, J., and Saidina Amin, N., "A Review on Operating Parameters for Optimum Liquid Oil Yield in Biomass Pyrolysis," Renew. Sustain. Energy Rev., 16, 5101-5109 (2012). https://doi.org/10.1016/j.rser.2012.05.033