• Title/Summary/Keyword: Pyrolysis Oil

Search Result 251, Processing Time 0.021 seconds

Fast Pyrolysis Characteristics of Jatropha Curcas L. Seed Cake with Respect to Cone Angle of Spouted Bed Reactor (분사층 반응기의 원뿔각에 따른 Jatropha Curcas L. Seed Cake의 급속열분해 특성)

  • Park, Hoon Chae;Lee, Byeong-Kyu;Kim, Hyo Sung;Choi, Hang Seok
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.161-167
    • /
    • 2019
  • Several types of reactors have been used during the past decade to perform fast pyrolysis of biomass. Among the developed fast pyrolysis reactors, fluidized bed reactors have been widely used in the fast pyrolysis process. In recent years, experimental studies have been conducted on the characteristics of biomass fast pyrolysis in a spouted bed reactor. The fluidization characteristics of a spouted bed reactor are influenced by particle properties, fluid jet velocity, and the structure of the core and annulus. The geometry of the spouted bed reactor is the main factor determining the structure of the core and annulus. Accordingly, to optimize the design of a spouted bed reactor, it is necessary to study the pyrolysis characteristics of biomass. However, no detailed investigations have been made of the fast pyrolysis characteristics of biomass in accordance with the geometry of the spouted bed reactor. In this study, fast pyrolysis experiments using Jatropha curcas L. seed shell cake were conducted in a conical spouted bed reactor to study the effects of reaction temperature and reactor cone angle on the product yield and pyrolysis oil quality. The highest energy yield of pyrolysis oil obtained was 63.9% with a reaction temperature of $450^{\circ}C$ and reactor cone angle of $44^{\circ}$. The results showed that the reaction temperature and reactor cone angle affected the quality of the pyrolysis oil.

Analytical study of the properties of slow pyrolysis of biomass by-product of Indonesia (인도네시아 바이오매스 부산물의 저속 열분해 특성 분석)

  • Kang, Kieseop;Lee, Yongwoon;Park, Jinjae;Ryu, Changkook;Yang, Won
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.61-64
    • /
    • 2013
  • Biomass is well known for organic resources photosynthesized by carbon dioxide water in the air and thus it can be widely used in the form of energy and production for various kinds of materials. Through pyrolysis, biomass can be transformed into solid(biochar), liquid(bio-oil), and combustible gas on the different condition of temperature and heating rate. That's why biomass can be practically used to preprocess and produce a variety of elements. This work is to analyze the characteristics of slow pyrolysis of three different kinds of biomass extracted from Indonesia. They showed similar moisture content and combinations of combustible matters and had quite a large discrepancy in the ash among them like 2.1 & of Bagasse, 91% of PKS, and 20.9% of Paddy Straw, respectively. yield of biochar, solid form of the biomass, steadily decreased when the temperature went up and that of bio-oil the highest at the temperature of 500 degrees Celsius. At the same temperature range, PKS bio-oil showed 51.4 % of yield and Bagasse had 55.1% while it turned out that Paddy straw showed the lowest yield of 37.2%. The apparent density was also measured to figure out the density of each product from the pyrolysis experiments at the temperature of 500 degrees Celsius. The result was like these; the density of biochar was 0.17, the lowest, and that of Tree stem was 1.3 when mixed by an equal amount of biochar and bio-oil.

  • PDF

Recovery of Available Resource from Waste Polymer using Thermal Degradation Process (고분자 폐가물의 열분해공정에서 유효자원의 회수)

  • 김형진;정수경;홍인권
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.98-104
    • /
    • 2000
  • Commercial rubber(IR, NR, BR), SBR, and tire were degraded by thermal degradation process. The oil yield of rubbers and tire ranges about 37~86%, it was increased with increase of operation temperature in pyrolysis. And the yield of pyrolytic oil was increased with increase of heating rate. The maximum oil yields of IR, NR, BR, SBR, and tire were 80, 73, 83, 86 and 55% each at $700^{\circ}C$ with a heating rate of $20^{\circ}C$/min, respectively. The pyrolytic oil components were consisted of about 50 aromatic compounds. The calorific value of purolytic oil of commercial rubber, SBR, and tire was measured by calorimeter, it was 39~40 kJ/g. The BET surface area of pyroblack was $47~63m^2/g$. The optimum condition of pyrolysis was operating temperature of $700^{\circ}C$ with heating rate of $20^{\circ}C$. Therefore, the pyrolytic oil and pyroblack are possible to alternative fuel and carbon black.

  • PDF

Pyrolysis of Waste Oriental Medicine Byproduct Obtained from the Decoction Process of Achyranthes Root (우슬(Achyranthes Root) 탕제 후 얻어진 폐한약재 부산물의 열분해)

  • Park, Ji Hui;Jeong, JaeHun;Lee, Ji Young;Kim, Young-Min;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.474-478
    • /
    • 2018
  • Thermal decomposition of waste Achyranthes Root (WAR) emitted from its decoction process was investigated using a TG analyzer and a fixed-bed reactor. The WAR had the larger C and fixed carbon content than fresh AR (FAR) due to the extraction of hemicelluloses from FAR during decoction process. Thermogravimetric (TG) analysis results also revealed the elimination of hemicellulose by its decoction. Relatively high contents of the cellulose and lignin made high contents of their typical pyrolyzates, such as acids, ketones, furans, and phenols, in the pyrolysis of WAR using the fixed-bed reactor. The increase of pyrolysis temperature from 400 to $500^{\circ}C$ increased yields of oil and gas due to the more effective cracking efficiency of WAR at a higher temperature. The chemical composition of product oil was also changed by applying the higher pyrolysis temperature, which increased the selectivity to furans and phenols.

The Study on Characteristics of Polystyrene by Low Temperature Pyrolysis by using Co and Mo Dispersed Catalysts (Co 및 Mo 기반 촉매에 의한 폴리스티렌의 저온 열분해 특성에 관한 연구)

  • Park, Jun-Gyu;Kim, Jae-Kon;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.676-685
    • /
    • 2016
  • This study investigated the conversion of oil products from polystyrene by using dispersed Co and Mo catalyst on reaction time and concentration change for knowledging on characteristics at low temperature (425, 450 and $475^{\circ}C$) pyrolysis and reaction time(20~80 min, 15 min interval) in a batch reactor. It will be showed the conditions for optimum pyrolysis at reaction temperature $450^{\circ}C$ and the reaction time 35min, and the main components of the converted liquid oil were styrene and benzene derivatives by GC/MS. The oil products formed during pyrolysis were classified into gas, gasoline, kero, diesel and heavy oil according to the domestic specification of petroleum products. The pyrolysis conversion rate was showed as Co catalyst > Mo catalyst > Thermal in all reaction time at reaction temperature $450^{\circ}C$. The yields rate of gas, kerosine, diesel were the most hight at Mo Catalyst, gasoline was at thermal and heavy oil was at Co catalyst. The conversion rate and yields of the pyrolysis products were the most height when Co catalyst ratio was 100%.

Liquefation Characteristics of Polypropylene by Low-Temperature Pyrolysis by using Co and Mo Dispersed Catalysts under time and loading variations (Co 및 Mo 분산촉매 반응시간과 농도 변화에 따른 PP의 저온열분해 액화특성)

  • Park, Jun-Gyu;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.281-289
    • /
    • 2015
  • This study investigated the conversion of oil products from polypropylene by using dispersed Co and Mo catalyst on reaction time and concentration change for knowledging liquefation characteristics at low-temperature (425, 450 and $475^{\circ}C$) pyrolysis in a batch reactor. The reaction time was set in 20~80 minutes and the oil products formed during pyrolysis were classfied into gas, gasoline, kero, diesel and heavy oil according to the domestic specification of petroleum products. The pyrolysis conversion rate was showed as Mo catalyst > Co catalyst > Thermal in all reaction time at reaction temperature $450^{\circ}C$. The conversion rate and yields of the pyrolysis products were the most height when Co and Mo Catalyst ratio was 50:50.

Characteristics of Bio-oil derived from Quercus Acutissima in a Fluidized Bed Pyrolyser (유동층 열분해로에 의하여 생산된 상수리나무 바이오오일의 특성)

  • Lee Sun-Hoon;Eom Min-Seop;Yoo Kyung-Seun;Lee Young-Soo;Kim Nam-Chan;Lee See-Hoon;Lee Jae-Goo;Kim Jae-Ho
    • Resources Recycling
    • /
    • v.15 no.1 s.69
    • /
    • pp.3-11
    • /
    • 2006
  • Fast pyrolysis of Quercus acutissima was carried out in a fluidized bed pyrolyser and then the physicochemical properities of obtained bio-oil were analyzed using GC/MS. The yields of bio-oil of Quercus acutissima and Larix leptolepis from a fluidized bed pyrolyzer were maximized at $350^{\circ}C\;and\;400^{\circ}C$, respectively. This is due to the difference or cellulose content between the two tree species. Above the optimum temperature, the yields of char and oil decreased as the reaction temperature increased, but the yield of gas-phase and water fraction increased. It is concluded that this phenomenon is occured by secondary pyrolysis in the free board. The feeding rate of the sample in a fluidized bed pyrolyser did not affect the yields and composition of products, because of a sufficient mixing between bed materials and sand.

Effect of Pig Feces and Pig Waste Mixture Compositions on Bio-oil Production by Pyrolysis Process (돈분과 돈슬러리의 성분이 열분해공정에 의한 바이오오일 생산효율에 미치는 영향)

  • Zhu, Kun;Choi, Hong Lim;Shin, Jongdu;Paek, E
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.29-35
    • /
    • 2009
  • Pyrolysis is recently used as one of alternative methods of animal waste treatment. In this study bio-oil was produced at $550^{\circ}C$ in an auger reactor through pyrolysis process. Two pig waste mixtures were used, pig feces mixed with rice husks and pig feces mixed with sawdust. The main compositions of hemicellulose, lignin, cellulose, protein, and fat were analyzed chemically. Based on the main composition results obtained, the contents of holocellulose (the sum of hemicellulose and cellulose) and lignin had a significant positive effect on bio-oil production, and there was a significant negative effect of ash content on bio-oil yield. The interactions between the different feedstocks were evaluated, and it was concluded that the interaction between pig feces and rice husks was minimal, whereas the interaction between pig feces and sawdust was significant.

Hydrogen Production by Steam Reforming of Aqueous Bio-Oil from Marine Algae (수소생산을 위한 해조류 유래 수용액 상 바이오오일의 수증기 개질 반응)

  • Park, Yong Beom;Lim, Hankwon;Woo, Hee-Chul
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.94-100
    • /
    • 2016
  • Hydrogen production via steam reforming of bio-oil from algal biomass over fast pyrolysis with commercial catalysts was carried out. Aqueous bio-oil obtained by phase separation from a crude oil over fast pyrolysis was used as a reactant and comparison studies for activity over different catalysts (FCR-4-02, POS-7, Cat. A, RUA), reaction temperature, and steam/carbon (S/C) ratios were performed. Experimental results showed that different catalytic activities were observed with different S/C ratios and catalyst composition and the highest hydrogen yield of 70% was obtained with a POS-7 catalyst at a S/C ratio of 10 and 1073 K.

Process Development of Pyrolysis Liquefaction for Waste Plastics (폐플라스틱의 열분해 유화기술 개발)

  • Nho Nam-Sun;Shin Dae-Hyun;Park Sou-Won;Lee Kyong-Hwan;Kim Kwang-Ho;Jeon Sang-Goo;Cho Bong-Gyu
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.118-125
    • /
    • 2006
  • The target of this work was the process development of demonstration plant to produce the high quality alternative fuel oil by the pyrolysis of mixed plastic waste. In the first step of research, the bench-scale units of 70 t/y and the pilot plant of 360 t/y had been developed. Main research contents in this step were the process performance test of pilot plant of 360 ton/year and the development of demonstration plant of 3,000 t/y, which was constructed at Korea R & D Company in Kimjae City. The process performance of pilot plant of 360 t/y showed about 80% yield of liquid product, which was obtained by both light gas oil(LGO) and heavy gas oil(HGO), The boiling point range distribution of LO product that was mainly consisting of olefin components in PONA group appeared at between that of commercial gasoline and kerosene. On the other hand, HO product was mainly paraffin and olefin components and also appeared at upper temperature distribution range than commercial diesel. Gas product showed a high fraction of $C_3\;and\;C_4$ product like LPG composition, but also a high fraction of $CO_2$ and CO by probably a little leak of process.

  • PDF