DOI QR코드

DOI QR Code

Pyrolysis of Waste Oriental Medicine Byproduct Obtained from the Decoction Process of Achyranthes Root

우슬(Achyranthes Root) 탕제 후 얻어진 폐한약재 부산물의 열분해

  • Park, Ji Hui (School of Environmental Engineering, University of Seoul) ;
  • Jeong, JaeHun (School of Environmental Engineering, University of Seoul) ;
  • Lee, Ji Young (School of Environmental Engineering, University of Seoul) ;
  • Kim, Young-Min (School of Environmental Engineering, University of Seoul) ;
  • Park, Young-Kwon (School of Environmental Engineering, University of Seoul)
  • 박지희 (서울시립대학교 환경공학부) ;
  • 정재훈 (서울시립대학교 환경공학부) ;
  • 이지영 (서울시립대학교 환경공학부) ;
  • 김영민 (서울시립대학교 환경공학부) ;
  • 박영권 (서울시립대학교 환경공학부)
  • 투고 : 2018.07.03
  • 심사 : 2018.07.09
  • 발행 : 2018.08.10

초록

Thermal decomposition of waste Achyranthes Root (WAR) emitted from its decoction process was investigated using a TG analyzer and a fixed-bed reactor. The WAR had the larger C and fixed carbon content than fresh AR (FAR) due to the extraction of hemicelluloses from FAR during decoction process. Thermogravimetric (TG) analysis results also revealed the elimination of hemicellulose by its decoction. Relatively high contents of the cellulose and lignin made high contents of their typical pyrolyzates, such as acids, ketones, furans, and phenols, in the pyrolysis of WAR using the fixed-bed reactor. The increase of pyrolysis temperature from 400 to $500^{\circ}C$ increased yields of oil and gas due to the more effective cracking efficiency of WAR at a higher temperature. The chemical composition of product oil was also changed by applying the higher pyrolysis temperature, which increased the selectivity to furans and phenols.

키워드

참고문헌

  1. Y. M. Kim, B. Lee, T. U. Han, S. Kim, T. Yu, B. Y. Bang, J. S. Kim, and Y. K. Park, Research on pyrolysis properties of waste plastic films, Appl. Chem. Eng., 28, 23-28 (2017).
  2. Y. M. Kim, B. S. Kim, K. S. Chea, T. S. Jo, S. Kim, and Y. K. Park, Ex-situ catalytic pyrolysis of Korean native oak tree over microporous zeolites, Appl. Chem. Eng., 27, 407-414 (2016). https://doi.org/10.14478/ace.2016.1051
  3. D. Shin, S. Jeong, Y. M. Kim, H. W. Lee, and Y. K. Park, Catalytic pyrolysis of waste paper cup containing coffee residuals, Appl. Chem. Eng., 29, 248-251 (2018).
  4. H. Lee, Y. M. Kim, I. G. Lee, J. K. Jeon, S. C. Jung, J. D. Chung, W. G. Choi, and Y. K. Park, Recent advances in the catalytic hydrodeoxygenation of bio-oil, Korean J. Chem. Eng., 33, 3299-3315 (2016). https://doi.org/10.1007/s11814-016-0214-3
  5. Daniyanto, Sutidjan, Deendarlianto, and A. Budiman, Torrefaction of Indonesian sugar-cane bagasse to improve bio-syngas quality for gasification process, Energy Procedia, 68, 157-166 (2015). https://doi.org/10.1016/j.egypro.2015.03.244
  6. E. Butler, G. Devlin, D. Meier, and K. McDonnell, A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading, Renew. Sustain. Energy, 15, 4171-4186 (2011). https://doi.org/10.1016/j.rser.2011.07.035
  7. H. W. Lee, Y. M. Kim, C. S. Jeong, S. H. Park, J. M. Kim, S. C. Jung, S. C. Kim, J. K. Jeon, and Y. K. Park, Catalytic pyrolysis of waste wood plastic composite over HV-MCM-41 catalysts, Sci. Adv. Mater., 9, 934-937 (2017). https://doi.org/10.1166/sam.2017.2915
  8. S. H. Ham, A study of analysis and method of operation improvement for excellent herbal medicine distribution support facilities, National Development Institute of Korean Medicine, No. 11-1352000-001875-01, p. 63-64, The Ministry of Health and Welfare, Korea (2016).
  9. Y. S. Lee, M. S. Kim, D. J. Kim, and H. Y. Sohn, A comparison of the components and biological activities of the ethanol extracts of Achyranthes japonica Nakai and Achyranthes bidentata Blume, Microbiol. Biotechnol. Lett., 41, 416-424 (2013). https://doi.org/10.4014/kjmb.1307.07001
  10. H. W. Lee, Y. M. Kim, J. Jae, B. H. Sung, S. C. Jung, S. C. Kim, J. K. Jeon, and Y. K. Park, Catalytic pyrolysis of lignin using a two-stage fixed bed reactor comprised of in-situ natural zeolite and ex-situ HZSM-5, J. Anal. Appl. Pyrolysis, 122, 282-288 (2016). https://doi.org/10.1016/j.jaap.2016.09.015
  11. J. W. Kim, S. H. Lee, S. S. Kim, S. H. Park, J. K. Jeon, and Y. K. Park, The pyrolysis of waste mandarin residue using thermogravimetric analysis and a batch reactor, Korean J. Chem. Eng., 28, 1867-1872 (2011). https://doi.org/10.1007/s11814-011-0176-4
  12. T. Mi, L. Chen, S. Xin, and X. Yu, Activated carbon from the chinese herbal medicine waste by $H_3PO_4$ activation, J. Nanomater., 2015, 910467 (2015).
  13. J. Ma, X. Meng, X. Guo, Y. Lan, and S. Zhang, Thermal analysis during partial carbonizing process of rhubarb, moutan and burnet, PLOS One, 12, e0173946 (2017). https://doi.org/10.1371/journal.pone.0173946
  14. L. Wang, C. Wang, Z. Pan, Y. Sun, and X. Zhu, Application of pyrolysis-gas chromatography and hierarchical cluster analysis to the discrimination of the Chinese traditional medicine Dendrobium candidum Wall. ex Lindl., J. Anal. Appl. Pyrolysis, 90, 13-17 (2011). https://doi.org/10.1016/j.jaap.2010.09.010
  15. H. Shafaghat, P. S. Rezaei, D. Ro, J. Jae, B. S. Kim, S. C. Jung, B. H. Sung, and Y. K. Park, In-situ catalytic pyrolysis of lignin in a bench-scale fixed bed pyrolyzer, J. Ind. Eng. Chem., 54, 447-453 (2017). https://doi.org/10.1016/j.jiec.2017.06.026