• 제목/요약/키워드: Pyrolysis Oil

검색결과 251건 처리시간 0.019초

Investigation of the Adsorption Properties of Activated Carbon Made by Chemical Activation of Mixed Waste Plastic Pyrolysis Residues (혼합 폐플라스틱 열분해 잔류물의 화학적 활성화를 통해 제조한 활성탄의 흡착 특성 조사)

  • Eun-Jin Moon;Yunsuk Kang;Byoungsun Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • 제11권4호
    • /
    • pp.391-399
    • /
    • 2023
  • Recently, low-temperature pyrolysis technology has been studied as a recycling method for waste plastic. Low-temperature pyrolysis technology for waste plastic produces pyrolysis oil that can be used as an energy resource, but solid residue remains. Waste plastic pyrolysis residues are mostly landfilled due to their limited use. In this study, it is investigated that mixed waste plastic pyrolysis residues could be recycled into activated carbon. It was confirmed that the fixed carbon content of the residue was 33.69 % from proximate Analysis. Chemical activation was used to manufacture activated carbon. KOH was used as an activator. To investigate the effect of the mixing ratio of KOH and residue, samples were mixed at ratios of 0.5, 1.0, and 2.0. The mixed sample was chemically activated at an activation temperature of 800 ℃ for 1 hour. As a result of analyzing the characteristics of activated carbon through BET, it was confirmed that the specific surface area increased as the mixing ratio of KOH increased.

Effect of Particle Size and Moisture Content of Woody Biomass on the Feature of Pyrolytic Products (급속열분해 공정에서 바이오매스의 입자크기와 수분 함량이 열분해 산물의 특성에 미치는 영향)

  • Hwang, Hyewon;Oh, Shinyoung;Kim, Jae-Young;Lee, Soomin;Cho, Taesu;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • 제40권6호
    • /
    • pp.445-453
    • /
    • 2012
  • In this study the effects of particle size and water content on the yields and physical/chemical properties of pyrolytic products were investigated through fast-pyrolysis of yellow poplar. Water content was critical parameters influencing the properties of bio-oil. The yields of bio-oil were increased with decreasing water content. However, the yield of pyrolytic product was not clearly influenced by feedstock's particle size. The water content, pH and HHV (Higher Heating Value) of bio-oil were measured to 20~30%, 2.2~2.4 and 16.6~18.5MJ/kg, respectively. The water content of feedstock was clearly influenced to water content of bio-oil. In terms of bio-char, HHV of them were measured to 26.2~30.1 MJ/kg with high content of carbon over 80%.

Effect of Organic Residue on the Continuous Pyrolysis of Waste Polystyrene (연속식 폐 EPS 열분해 반응에 대한 잔류물의 영향)

  • Yoon, Byung Tae;Kim, Seong Bo;Lee, Sang Bong;Choi, Myoung Jae
    • Korean Chemical Engineering Research
    • /
    • 제43권1호
    • /
    • pp.125-128
    • /
    • 2005
  • Oil formation rate, composition of crude oil and formation of side products such as ${\alpha}-methyl$ styrene, ethyl benzene, benzene, toluene, dimer and trimer on thermal degradation of polystyrene were affected by various factors. Especially, formation of organic residue formed during reaction gave an important influence on formation of oil and composition of crude oil. Also, composition of formed crude oil showed a significant difference on reaction time. These results were caused by organic residue and carbonized solid formed during continuous reaction. Increase of residue and carbonized solid gave a decrease of yield of styrene and an increase of formation of ${\alpha}-methyl$ styrene, ethyl benzene, benzene, toluene. New reaction system was proposed for continuous operation at the thermal degradation of polystyrene.

Recovery of Lipids from Chlorella sp. KR-1 via Pyrolysis and Characteristics of the Pyrolysis Oil (Chlorella sp. KR-1 열분해에 의한 지질 회수 및 열분해 오일 특성 분석)

  • Lee, Ho Se;Jeon, Sang Goo;Oh, You-Kwan;Kim, Kwang Ho;Chung, Soo Hyun;Na, Jeong-Geol;Yeo, Sang-Do
    • Korean Chemical Engineering Research
    • /
    • 제50권4호
    • /
    • pp.672-677
    • /
    • 2012
  • Lipids in microalgal biomass were recovered by using pyrolysis method. The pyrolysis experiments of two Chlorella sp. KR-1 samples, which have triglyceride contents of 10.8% and 36.5%, respectively were carried out at $600^{\circ}C$ to investigate the effects of lipid contents in the cells on the reaction characteristics. The conversion and liquid yield of the lipid-rich sample were higher than those of the lipid-lean sample since its carbon to hydrogen ratio was low. There were low molecular weight organic acids, ketones, aldehydes and alcohols in the liquid products from both KR-1 samples, but the pyrolysis oil of the lipid-rich sample was abundant in free fatty acids, particularly palmitic acid, oleic acid and stearic acid while the content of nitrogen containing organic compounds was low. The microalgal pyrolysis oil had two layers composed of the light hydrophobic fraction and the heavy hydrophilic fraction. The light fraction might be originated from triglycerides and the heavy fraction might be from carbohydrates and proteins. In the light fraction of the liquid products, there were considerable linear alkanes such as pentadecane and heptadecane as well as free fatty acids, implying that deoxygenation reaction including decarboxylation was occurred during the pyrolysis. The yield of the liquid products from the pyrolysis of the KR-1 sample having triglyceride content of 36.5% was 56.9% and the light fraction in the liquid products was 68.2%. Also more than 80% of the light fraction was free fatty acids and pure hydrocarbons, thus showing that most triglycerides could be extracted in the form of suitable raw materials for biofuels.

A Study of Emulsion Fuel of Cellulosic Biomass Oil (목본계 바이오매스오일의 에멀젼 연료화 연구)

  • Kim, Moon-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • 제33권4호
    • /
    • pp.836-847
    • /
    • 2016
  • Water soluble oil was obtained by pyrolysis of biomass. The characteristics of emulsified fuel by mixing water soluble oil and MDO(marine diesel oil) and engine emissions were studied with engine dynamometer. Saw dust was used as biomass. Water soluble oil was obtained by condensing of water and carbon content with pyrolysis of saw dust at $500^{\circ}C$. Emulsion fuel was obtained by emulsifying MDO and water soluble oil by the water soluble oil mixing ratio of 10 to 20% of MDO. Exhaust gas detection was performed with engine dynamometer. While combustion, micro-explosion took place in the combustion chamber by water in the emulsion fuel, emulsion fuel scattered to micro particles and it caused to smoke reduction. The heat produced from water vapour reduce the temperature of internal combustion chamber and it caused to inhibition of NOx production. It can be verified by the lower exhaust temperature of each ND-13 mode using emulsion fuel than that of MDO fuel. The NOx and smoke concentration were reduced by increasing water soluble oil content in the emulsion fuel. The power also decreased according to the increment of water soluble oil content of emulsion fuel because emulsion fuel has low calorific value due to high water content than MDO. As a result of ND-13 mode test with 20% bio oil content, it was achieved 25% reduction in NOx production, 60% reduction in smoke density, and 15% reduction in power loss.

Study on The Thermochemical Degradation Features of Empty Fruit Bunch on The Function of Pyrolysis Temperature (반응온도에 따른 팜 부산물(empty fruit bunch)의 열화학적 분해 특성에 관한 연구)

  • Lee, Jae Hoon;Moon, Jae Gwan;Choi, In-Gyu;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권3호
    • /
    • pp.350-359
    • /
    • 2016
  • We performed fast pyrolysis of empty fruit bunch (EFB) in the range of temperature from $400{\sim}550^{\circ}C$ and 1.3 s of residence time. The effect of temperature on the yields and physicochemical properties of pyrolytic products were also studied. Elemental and component analysis of EFB showed that the large amount of potassium (ca. 8400 ppm) presents in the feedstock. Thermogravimetric analysis suggested that the potassium in the feedstock catalyzed degradation of cellulose. The yield of bio-oil increased with increasing temperature in the range of temperature from $400{\sim}500^{\circ}C$, while that of gas and biochar decreased and showed monotonous change each with increasing temperature. When the EFB was pyrolyzed at $550^{\circ}C$, the yield of bio-oil and char decreased while that of gas increased. Water content of the bio-oils obtained at different temperatures was 20~30% and their total acid number were less than 100 mg KOH/g oil. Viscosity of the bio-oils was 11 cSt (centistoke), and heating value varied from 15 to 17 MJ/kg. Using GC/MS analysis, 27 chemical compounds which were classified into two groups (cellulose-derived and lignin-derived) were identified. Remarkably the concentration of phenol was approximately 25% based on entire chemical compounds.

Study of Hydrotreating and Hydrocracking Catalysts for Conversion of Waste Plastic Pyrolysis Oil to Naphtha (폐플라스틱 열분해유의 납사 전환을 위한 수첨처리 및 수첨분해 촉매연구)

  • Ki-Duk Kim;Eun Hee Kwon;Kwang Ho Kim;Suk Hyun Lim;Hai Hung Pham;Kang Seok Go;Sang Goo Jeon;Nam Sun Nho
    • Applied Chemistry for Engineering
    • /
    • 제34권2호
    • /
    • pp.126-130
    • /
    • 2023
  • In response to environmental demands, pyrolysis is one of the practical methods for obtaining reusable oils from waste plastics. However, the waste plastic pyrolysis oils (WPPO) are consumed as low-grade fuel oil due to their impurities. Thus, this study focused on the upgrading method to obtain naphtha catalytic cracking feedstocks from WPPO by the hydroprocessing, including hydrotreating and hydrocracking reaction. Especially, various transition metal sulfides supported catalysts were investigated as hydrotreating and hydrocracking catalysts. The catalytic performance was evaluated with a 250 ml-batch reactor at 370~400 ℃ and 6.0 MPa H2. Sulfur-, nitrogen-, and chlorine-compounds in WPPO were well eliminated with nickel-molybdenum/alumina catalysts. The NiMo/ZSM-5 catalyst has the highest naphtha yield.

Simulation and model validation of Biomass Fast Pyrolysis in a fluidized bed reactor using CFD (전산유체역학(CFD)을 이용한 유동층반응기 내부의 목질계 바이오매스 급속 열분해 모델 비교 및 검증)

  • Ju, Young Min;Euh, Seung Hee;Oh, Kwang cheol;Lee, Kang Yol;Lee, Beom Goo;Kim, Dae Hyun
    • Journal of Energy Engineering
    • /
    • 제24권4호
    • /
    • pp.200-210
    • /
    • 2015
  • The modeling for fast pyrolysis of biomass in fluidized bed reactor has been developed for accurate prediction of bio-oil and gas products and for yield improvement. The purpose of this study is to analyze and to compare the CFD(Computational Fluid Dynamics) simulation results with the experimental data from the CFD simulation results with the experimental data from the reference(Mellin et al., 2014) for gas products generated during fast pyrolysis of biomass in fluidized bed reactor. CFD(ANSYS FLUENT v.15.0) was used for the simulation. Complex pyrolysis reaction scheme of biomass subcomponents was applied for the simulation of pyrolysis reaction. This pyrolysis reaction scheme was included reaction of cellulose, hemicellulose, lignin in detail, gas products obtained from pyrolysis were mainly $CO_2$, CO, $CH_4$, $H_2$, $C_2H_4$. The deviation between the simulation results from this study and experimental data from the reference was calculated about 3.7%p, 4.6%p, 3.9%p for $CH_4$, $H_2$, $C_2H_4$ respectively, whereas 9.6%p and 6.7%p for $CO_2$ and CO which are relatively high. Through this study, it is possible to predict gas products accurately by using CFD simulation approach. Moreover, this modeling approach should be developed to predict fluidized bed reactor performance and other gas product yields.