Browse > Article
http://dx.doi.org/10.5714/CL.2016.18.080

Structural and preliminary electrochemical characteristics of palm oil based carbon nanospheres as anode materials in lithium ion batteries  

Arie, Arenst Andreas (Department of Chemical Engineering, Parahyangan University)
Kristianto, Hans (Department of Chemical Engineering, Parahyangan University)
Susanti, Ratna Frida (Department of Chemical Engineering, Parahyangan University)
Devianto, Hary (Department of Chemical Engineering, Institut Teknologi Bandung)
Halim, Martin (Advanced Energy Material Processing Laboratory, Korea Institute of Science and Technology)
Lee, Joong Kee (Advanced Energy Material Processing Laboratory, Korea Institute of Science and Technology)
Publication Information
Carbon letters / v.18, no., 2016 , pp. 80-83 More about this Journal
Keywords
carbon nanospheres; thermal pyrolysis; palm oil; activated carbon support; Fe-catalyst;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ji L, Lin Z, Alcoutlabi M, Zhang X. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci, 4, 2682 (2011). http://dx.doi.org/10.1039/C0EE00699H.   DOI
2 Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2 and Li-S batteries with high energy storage. Nat Mater, 11, 19 (2012). http://dx.doi.org/10.1038/nmat3191.   DOI
3 Nishihara H, Kyotani T. Templated nanocarbons for energy storage. Adv Mater, 24, 4473 (2012). http://dx.doi.org/10.1002/adma.201201715.   DOI
4 Vu A, Qian Y, Stein A. Porous electrode materials for lithiumion batteries: how to prepare them and what makes them special. Adv Energy Mater, 2, 1056 (2012). http://dx.doi.org/10.1002/aenm.201200320.   DOI
5 Nardecchia S, Carriazo D, Ferrer ML, Gutiérrez MC, del Monte F. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem Soc Rev, 42, 794 (2013). http://dx.doi.org/10.1039/C2CS35353A.   DOI
6 Nieto-Márquez A, Romero R, Romero A, Valverde JL. Carbon nanospheres: synthesis, physicochemical properties and applications. J Mater Chem, 21, 1664 (2011). http://dx.doi.org/10.1039/C0JM01350A.   DOI
7 Roberts AD, Li X, Zhang H. Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem Soc Rev, 43, 4341 (2014). http://dx.doi.org/10.1039/C4CS00071D.   DOI
8 Qian HS, Han FM, Zhang B, Guo YC, Yue J, Peng BX. Non-catalytic CVD preparation of carbon spheres with a specific size. Carbon, 42, 761 (2004). http://dx.doi.org/10.1016/j.carbon.2004.01.004.   DOI
9 Hu YS, Demir-Cakan R, Titirici MM, Müller JO, Schlögl R, Antonietti M, Maier J. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. Angew Chem Int Ed, 47, 1645 (2008). http://dx.doi.org/10.1002/anie.200704287.   DOI
10 Yang S, Zeng H, Zhao H, Zhang H, Cai W. Luminescent hollow carbon shells and fullerene-like carbon spheres produced by laser ablation with toluene. J Mater Chem, 21, 4432 (2011). http://dx.doi.org/10.1039/C0JM03475D.   DOI
11 Liu J, Qiao SZ, Liu H, Chen J, Orpe A, Zhao D, Lu GQ. Extension of the Stöber method to the preparation of monodisperse resorcinol: formaldehyde resin polymer and carbon spheres. Angew Chem Int Ed, 50, 5947 (2011). http://dx.doi.org/10.1002/anie.201102011.   DOI
12 Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S. Carbon materials for chemical capacitive energy storage. Adv Mater, 23, 4828 (2011). http://dx.doi.org/10.1002/adma.201100984.   DOI