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Pyrolysis fuel oil (PFO) is a petroleum residue oil obtained from naphtha cracking centers 
in the petroleum refining process. It has received much attention due to such advantages as 
its high aromaticity, low sulfur content, low toluene-insoluble content, and low cost [1-4]. 
PFO is especially suitable for the manufacture of pitch, which is a precursor of several car-
bon materials [5-7]. PFO can be converted into pitch through heat reaction treatment. The 
conditions of the PFO heat reaction play a very important role, as they can influence the 
chemical structures of the produced pitch [8-10]. Currently, researchers are studying pitch 
extraction from PFO using various methods and conditions.

Jung et al. [11] studied the reforming of PFO by electron beam (EB) radiation for pitch 
production. PFO containing AlCl3 as a catalyst was heated to 270°C and subsequently ir-
radiated by EB. As a result, the pitches obtained by EB treatment had decreased nitrogen, 
hydrogen, and sulfur contents; moreover, the aromaticity, quinoline-insoluble values, tolu-
ene-insoluble values, softening point, and molecular weight increased. EB treatment for the 
conversion of PFO into pitch was found to be useful in preparing aromatic pitches.

Jung et al. [12] investigated the effect of ultraviolet (UV) irradiation on the production of 
pitch from PFO. As-received PFO was treated with heat and then irradiated by UV. The UV 
irradiation decreased the hydrogen content and increased the aromatic carbon compounds 
and the softening point of the obtained pitch. Therefore, UV irradiation was also found to be 
an effective method for the preparation of pitch from PFO.

In this study, PFO was pretreated by oxidation with H2O2 to increase the carbon yield, and 
then thermally treated for various times to increase the carbon yield. The obtained pitches 
were characterized by Fourier transform infrared spectroscopy (FT-IR), H nuclear magnetic 
resonance (NMR), carbon yield and electrical conductivity.

PFO, supplied from GS Caltex Corporation (Jeonju, Korea), was pretreated by oxidation 
using H2O2 injection at 110°C to distil and remove volatiles. Oxidation-pretreated samples 
were then subjected to different heat treatment times (HTT) of 1, 3, 5, 7, and 10 h at 360°C 
under N2 flow. The FT-IR spectra were obtained using a Bruker Tensor 37 (Billerica, MA, 
USA) to determine changes in the functional groups caused by each treatment. All samples 
were prepared as thin films, and mixed with KBr at a sample/KBr ratio of 1:100 (w/w). The 
spectra obtained were the results of 30 scans at a spectrophotometer resolution of 8 cm–1. The 
chemical structures of the obtained pitches were identified by 1H NMR spectra (CXP-40, 
Bruker), measured at a resonance frequency of 38.27 MHz on a spectrometer equipped with 
a high-temperature probe. Electrical resistivity analysis was measured using a 4-point probe 
device by Mitsubishi Chemical Corp. (Tokyo, Japan). 

FT-IR analysis was carried out in the 400–4000 cm–1 range to identify changes to the 
functional groups of the PFO-derived pitches obtained from different HTTs after oxidation 
pretreatment. As observed in Fig. 1, the spectrum of the PFO raw material shows the adsorp-
tion peak for the aromatic C–H out of plane bending bonds at 700–900 cm–1, the aromatic 
C–H bonds at 1600 and 3042 cm–1, and the stretching C–H bond at 2910 cm–1. However, in 
the case of the PFO-derived pitches, the intensities of the aromatic C–H bonds at 1600 and 
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that the aromaticity of the PFO-derived pitch increases with an 
increase in HTT.

Fig. 3 shows the electrical resistivity of PFO-derived pitches 
obtained according to HTT after oxidation pretreatment. The re-
sistivity of the obtained samples decreases monotonously with 
an increase in HTT. In addition, the carbon yields increase with 
an increase in HTT. These results indicate that an increase of 
the aromatic portion in the PFO-derived pitch influences the de-
crease in electrical resistivity. 

In conclusion, we studied PFO-derived pitches prepared with 
different HTT after oxidation pretreatment by H2O2. The ob-
tained pitches were evaluated by FT-IR, NMR, and electrical 
resistivity. In the FT-IR analysis, the structural conversion of the 
PFO-derived pitches showed an increase in the intensities of the 
aromatic C–H bonds at 1600 and 3042 cm–1 and a decrease in 
the intensity of the stretching C–H bond at 2910 cm–1 as HTT 
increased. Furthermore, NMR analysis showed that the intensity 
of the aromatic portion (7–11 ppm) of the PFO-derived pitch 
increased with an increase in HTT.
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after different heating times.
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