DOI QR코드

DOI QR Code

Effects of heat treatment time on aromatic yield of pyrolysis fuel oil-derived pitches

  • Received : 2016.01.15
  • Accepted : 2016.03.19
  • Published : 2016.07.31

Abstract

Keywords

References

  1. Asir S, Demir AS, Icil H. The synthesis of novel, unsymmetrically substituted, chiral naphthalene and perylene diimides: photophysical, electrochemical, chiroptical and intramolecular charge transfer properties. Dyes Pigm, 84, 1 (2010). http://dx.doi.org/10.1016/j.dyepig.2009.04.014.
  2. Cao D, Feng P, Wu J. Molecular simulation of novel carbonaceous materials for hydrogen storage. Nano Lett, 4, 1489 (2004). http://dx.doi.org/10.1021/nl0491475.
  3. Chung DDL. Electrical applications of carbon materials. J Mater Sci, 39, 2645 (2004). http://dx.doi.org/10.1023/b:jmsc.0000021439.18202.ea.
  4. Zhang WF, Huang ZH, Guo Z, Li C, Kang F. Porous carbons prepared from deoiled asphalt and their electrochemical properties for supercapacitors. Mater Lett, 64, 1868 (2010). http://dx.doi.org/10.1016/j.matlet.2010.06.007.
  5. Park SJ. Carbon Fibers, Springer, New York, NY (2015).
  6. Park SJ, Jang YS, Shim JW, Ryu SK. Studies on pore structures and surface functional groups of pitch-based activated carbon fibers. J Colloid Interface Sci, 260, 259 (2003). http://dx.doi.org/10.1016/s0021-9797(02)00081-4.
  7. Shim JW, Park SJ, Ryu SK. Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon, 39, 1635 (2001). http://dx.doi.org/10.1016/s0008-6223(00)00290-6.
  8. Oshida K, Bonnamy S. Primary carbonization of an anisotropic ‘mesophase’ pitch compared to conventional isotropic pitch. Carbon, 40, 2699 (2002). http://dx.doi.org/10.1016/s0008-6223(02)00184-7.
  9. Lee S, Eom Y, Kim BJ, Mochida I, Yoon SH, Kim BC. The thermotropic liquid crystalline behavior of mesophase pitches with different chemical structures. Carbon, 81, 694 (2015). http://dx.doi.org/10.1016/j.carbon.2014.10.007.
  10. Mayani VJ, Mayani SV, Lee Y, Park SK. A non-chromatographic method for the separation of highly pure naphthalene crystals from pyrolysis fuel oil. Sep Purif Technol, 80, 90 (2011). http://dx.doi.org/10.1016/j.seppur.2011.04.013.
  11. Jung JY, Park MS, Kim MI, Lee YS. Novel reforming of pyrolized fuel oil by electron beam radiation for pitch production. Carbon Lett, 15, 262 (2014). http://dx.doi.org/10.5714/cl.2014.15.4.262.
  12. Jung MJ, Jung JY, Lee D, Lee YS. A new pitch reforming from pyrolysis fuel oil by UV irradiation. J Ind Eng Chem, 22, 70 (2015). http://dx.doi.org/10.1016/j.jiec.2014.06.026.

Cited by

  1. Characterization of Toluene- and Quinoline-Insoluble Extracted from Pyrolysis Fuel Oil-Derived Pitch for Manufacture of C/C Composites vol.19, pp.7, 2018, https://doi.org/10.1007/s12541-018-0122-z