• 제목/요약/키워드: Pyridoxal-5-P

검색결과 37건 처리시간 0.021초

Reaction of Phospholipid with Brain Glutamate Decarboxylase

  • Lee, B.R.;Jang, S.H.;Song, M.S.;S.Wee;Park, E.Y.;Lee, K.S.;Park, S.Y.
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1995년도 춘계학술대회
    • /
    • pp.73-73
    • /
    • 1995
  • We investigated the effect of derivatized phospholipid, P-pyridoxyl dipalmiuylphosphatidylethanolamine (P-pyr-DPPE), on the catalytic activity of purified porcine brain glutamate decarboxylase(GAD) which catalyzes the synthesis of GABA known as major inhibitory neurotransmitter in CNS. When the P-pyr-DPPE was incorporated into dipalmitdylphosphatidylcholine(DPPC) or phosphatidylserine(PS) vesicles, these vesicles enhanced the catalytic activity of GAD. P-pyr-DPPE also interacted with apoglutamate decarboxylase(apoGAD) and produced the free pyridoxal-5-phosphate(PLP) which is the natural cofactor of GAD. This result indicated that apoGAD catalyzed the cleavage reaction of the P-pyridoxyl moiety of the derivatized phopholipid to generate free PLP, and then free PLP bound to the apoGAD resulting in restroration of the catalytic activity of the enzyme.

  • PDF

Inhibitory actions of the antidepressant/antipanic drug phenelzine on brain GABA transaminase

  • Yoo, Byung-Kwon;Hong, Joung-Woo;Suk, Jae-Wook;Ahn, Jee-Yin;Yoo, Jeong-Suk;Lee, Kil-Soo;Cho, Sung-Woo;Choi, Soo-Young
    • Archives of Pharmacal Research
    • /
    • 제19권6호
    • /
    • pp.480-485
    • /
    • 1996
  • Brain GABA transaminase is inactivated by preincubation with antidepressant/antipanic drug pheneizine (${\beta}$ethylphenylhydrazine) (mixing molar ratio 10:1) at pH 7.4. The reaction of enzyme with phenelzine was monitored by absorption and fluorescence spectroscopic methods. The inactive enzyme was fully reconstituted by addition of cofactor pyridoxal-5-phosphate. This result implies that the blocking of 1 mol of pyridoxal-5-phosphate per enzyme dimer is needed for inactivation of the enzyme. The time course of the reaction is significantly affected by the substrate .alpha.-ketoglutarate, which afforded complete protection against the loss of catalytic activity. The kinetic studies shows that phenelzine reacts with the cofactor of enzyme with a second-order rate constant of $2.1{\times}10^3M^{-1}s^{-1}$. It is postulated that the antidepressant/antipanic drug phenelzine is able to elevate the neurotransmitter GABA levels in central nervous system by inhibitory action on GABA degradative enzyme GABA transaminase.

  • PDF

Characterization of 1,4-Benzoquinone Reductase from Bovine Liver

  • Kim, Kyungsoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권4호
    • /
    • pp.216-220
    • /
    • 2002
  • 1,4-Benzoquinone reductase was purified to electrophoretic homogeneity from bovine liver, and the purified enzyme found to have a molecular mass of 29 kDa, as determined by sodium dodecyl sulfate- polyacrylamide gel electrophoresis The enzyme exhibited pH optimum between 8.0 and 8.5. The apparent fm for 1,4-benzoqulnone was 1.643 mM, and the apparent Km for NADH was 1.837 mM. Various divalent cations, such as Hg$\^$2+/, Cu$\^$2+/, and Zn$\^$2+/, exhibited strong inhibitory effects. The enzyme activity was also strongly inhibited by quercetin, dicumarol, and benzoic acid. Incubation of the enzyme with N-bromosuccinimide and pyridoxal 5’-phosphate led to inhibitions of 100% and 99%, respectively. Accordingly, these results suggest that trypto-phan and Iysine residues are Involved at or near the active sites of the enzyme.

Chemical Modification of Extracellular Cytosine Deaminase from Chromobacterium violaceum YK 391

  • Kim, Tae-Hyun;Yu, Tae-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권6호
    • /
    • pp.581-587
    • /
    • 1998
  • Essential amino acids involved in the catalytic role of the extracellular cytosine deaminase from Chromobacterium violaceum YK 391 were determined by chemical modification studies. The enzyme activity required the reduced form of Fe (II) ion, since the enzyme was inhibited by ο-phenanthroline. The enzyme activity was completely inhibited by the chemical modifiers, such as p-chloromercuribenzoate (p-CMB), p-hydroxymercuribenzoate, and chloramine-T at 1 mM each. The enzyme activity was also markedly inhibited by pyridoxal-5'-phosphate, diethyl pyrocarbonate, and phenylmethylsulfonyl fluroride at 1 mM each. The inactivation of the enzyme activity with p-CMB was reversed by a high concentration of cytosine. Furthermore, the inactivation of the enzyme activity with p-CMB was also reactivated by 1 mM dithiothreitol, 1 mM 2-mercaptoethanol, 1 mM cysteine-HCI, 10% ethyl alcohol, and 10% methyl alcohol. These results suggested that cysteine and methionine residues might be located in or near the active site of the enzyme, while lysine, histidine, and serine residues might be indirectly involved in the enzyme activity.

  • PDF

${\beta}-Tyrosinase$에 관한 연구 -제1보, ${\beta}-Tyrosinase$의 효소학적(酵素學的) 성질(性質)에 대하여- (Studies on the ${\beta}-Tyrosinase$ -Part 1. On the Enzymological Characteristics of ${\beta}-Tyrosinase$-)

  • 김찬조;장택투;곡길수;산전수명
    • Applied Biological Chemistry
    • /
    • 제22권4호
    • /
    • pp.191-197
    • /
    • 1979
  • Km값 및 분광학적성질(分光學的性質)를 조사하고 아울러 이 효소(酵素)의 결정화법(結晶化法)을 검토하여 다음과 같은 결과를 얻었다. 1. 효소(酵素)의 정제(精製)과정에서 유안분별침전(硫安分別沈澱)을 한 조효소(粗酵素)를 pH6.0 및 7.0의 인산염(燐酸鹽)완충액으로 48시간 이상의 충분한 투석(透析)을 시키고 DEAE-Sephadex column chromatography에서는 11mg protein/ml DEAE-Sephadex 정도의 DEAE-Sephadex를 사용하는 것이 효과적이였다. 2. 효소(酵素)의 정제과정(精製過程)에서 이미 알려진 protamin 황산(黃酸) 처리와 Sephadex G-150의 gel여과는 생략하여도 무방하였다. 3. 효소(酵素)의 결정화(結晶化)에서는 단백질을 20mg/ml의 농도가 되게끔 2-mercaptoethanol를 함유하는 0.01M 인산(燐酸)카리 완충액에 녹여 고체유안(固體硫安) 첨가(添加)법으로 결정(結晶)시키는 것이 가장 큰 육각봉상(六角棒狀)의 결정(結晶)이 얻어졌다. 4. Pyridoxal phosphate와 결합(結合)한 holo형 ${\beta}-tyrosinase$는 340nm와 430nm의 파장(波長)에서 각각 최대흡수(最大吸收)를 나타내었다. 5. ${\beta}-tyrosinase$의 L-tyrosine에 대한 Km값은 $2.31{\times}10^{-4}M$이였으며 SDS-polyacrylamide 전기영동법(電氣泳動法)에 의한 이 효소(酵素)의 subunit의 분자량(分子量)은 약 5,000이였다.

  • PDF

Development of Bioreactor System for L-Tyrosine Synthesis Using Thermostable Tyrosine Phenol-Lyase

  • Kim, Do-Young;Rha, Eugene;Choi, Su-Lim;Song, Jae-Jun;Hong, Seung-Pyo;Sung, Moon-Hee;Lee, Seung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.116-122
    • /
    • 2007
  • An efficient enzyme system for the synthesis of L-tyrosine was developed using a fed-batch reactor with continuous feeding of phenol, pyruvate, and ammonia. A thermo- and chemostable tyrosine phenol-lyase from Symbiobacterium toebii was employed as the biocatalyst in this work. The enzyme was produced using a constitutive expression system in Escherichia coli BL21, and prepared as a soluble extract by rapid clarification, involving treatment with 40% methanol in the presence of excess ammonium chloride. The stability of the enzyme was maintained for at least 18 h under the synthesis conditions, including 75 mM phenol at pH 8.5 and $40^{\circ}C$. The fed-batch system (working volume, 0.51) containing 1.0 kU of the enzyme preparation was continuously fed with two substrate preparations: one containing 2.2 M phenol and 2.4 M sodium pyruvate, and the other containing 0.4 mM pyridoxal-5-phosphate and 4M ammonium chloride (pH 8.5). The system produced 130g/I of L-tyrosine within 30h, mostly as precipitated particles, upon continuous feeding of the substrates for 22 h. The maximum conversion yield of L-tyrosine was 94% on the basis of the supplied phenol.

$\gamma$-Aminobutyrate Transaminase에 대한 Mycotoxin의 저해작용 (Inhibitory Actions of Mycotoxins on Brain $\gamma$-Aminobutyrate Transaminase)

  • Lee, Su-Jin;Lee, Kil-Soo;Choi, Soo-Young
    • 미생물학회지
    • /
    • 제31권3호
    • /
    • pp.224-229
    • /
    • 1993
  • GABA transminase (4-aminobutyrate aminotransferase), which catalyzes the breakdown of the major inhibitory neurotransmitter, GABA, in mammalian brain, was inactivated by preincubation with the mycotoxin patulin. The time course of the reaction was significantly affected by the substrate .alpha.-ketoglutarate, which aforded complete protection against the loss of catalytic activity. The recovery from the inhibition of patulin by the addition of dithiothreitol (DTT) supports that patulin reacts with the sulfhydryl residue in the catalytic domain of the enzyme. The reconstitution of the reduced enzyme and apoenzyme with pyridoxal-5-P(PLP) was inhibited by another mycotoxin, penicilic acid. This mycotoxin may interact with lysyl residue of the enzyme. Therefore, it is postulated that the critical sulfhydryl and lysyl residues in the catalytic domain of the enzyme react with mycotoxin patulin and penicillic acid, respectively.

  • PDF

화학적수식에 의한 Bacillus subtilis ED 213 Cytidine Deaminase의 활성부위에 관한 연구 (A study on the Active Site of Cytidine Deaminase from Bacillus subtilis ED 213 by Chemical Modification)

  • 박정문;박상원;서태수;김정;유대식
    • 미생물학회지
    • /
    • 제35권2호
    • /
    • pp.133-138
    • /
    • 1999
  • Bacillus subtilis ED 213의 cytidine deaminase 의 활성부위에 존재하는 필수 아미노산잔기를 화학수식 방법으로 측정하였다. 본 효소는 1mM o-phenanthroline 에 의하여 효소활성이 43% 저해되어 효소활성 발현에 Fe\sup 2+\가 요구된다고 추정되며, 1mM ethylenediaminetetraacetic acid 에 의해서는 효소활성이 오히려 28% 정도 촉진되었다. 본 효소는 1mM N-bromosuccinimide, 1mM chloramine-T 와 1mM $\rho$-chloromercuribenzoic acid에 의하여 100% 저해되었으며, 그의 저해 양상은 경쟁적 저해 양상을 나타내었다. 본 효소의 효소활성은 1mM pyridoxal-5-phosphate 에 의항 36% 저해되었으며, 1mM 1ethyl-3-carbodiamide 와 1mM glycine methylester에 의해 저해된 효소활성이 5mM cysteine에 의해 완전히 회복되었다. 이상의 결과로부터 Bacillus subtilis ED 213 cytidine deaminase의 활성부위에는 tyrosine, methionine, cysteine 과 serine 잔기가 관여할 뿐만 아니라 lysine 과 glycine 도 효소활성에 관여하는 것으로 추정된다.

  • PDF

Extracellular 5-Aminolevulinic Acid Production by Escherichia coli Containing the Rhodopseudomonas palustris KUGB306 hemA Gene

  • Choi, Han-Pil;Lee, Young-Mi;Yun, Cheol-Won;Sung, Ha-Chin
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권6호
    • /
    • pp.1136-1140
    • /
    • 2008
  • The Rhodopseudomonas palustris KUGB306 hemA gene codes for 5-aminolevulinic acid (ALA) synthase. This enzyme catalyzes the condensation of glycine and succinyl-CoA to yield ALA in the presence of the cofactor pyridoxal 5'-phosphate. The R. palustris KUGB306 hemA gene in the pGEX-KG vector system was transformed into Escherichia coli BL21. The effects of physiological factors on the extracellular production of ALA by the recombinant E. coli were studied. Terrific Broth (TB) medium resulted in significantly higher cell growth and ALA production than did Luria-Bertani (LB) medium. ALA production was significantly enhanced by the addition of succinate together with glycine in the medium. Maximal ALA production (2.5 g/l) was observed upon the addition of D-glucose as an ALA dehydratase inhibitor in the late-log culture phase. Based on the results obtained from the shake-flask cultures, fermentation was carried out using the recombinant E. coli in TB medium, with the initial addition of 90 mM glycine and 120 mM succinate, and the addition of 45 mM D-glucose in the late-log phase. The extracellular production of ALA was also influenced by the pH of the culture broth. We maintained a pH of 6.5 in the fermenter throughout the culture process, achieving the maximal levels of extracellular ALA production (5.15 g/l, 39.3 mM).

Pseudomonas syringae pv. Phaseolicola에 의한 Ethylene 생성에서의 전구물질 (Precursors for the Ethylene Evolution of Pseudornonas syringae pv. Phaseolicola)

  • 배무;권혜영
    • 한국미생물·생명공학회지
    • /
    • 제19권1호
    • /
    • pp.14-20
    • /
    • 1991
  • Pseudomonas syringae의 intact cell에서 에틸렌 생성을 극대화 하기 위한 전환조건은 $30^{\circ}C$. pH7.5로 조사되었고, 다양한 기질의 전환효과를 검초한 결과, Asn>Gln>Asp>Glu>$\alpha$-KG>citrate>oxalacetate의 순으로 많은양의 에틸렌을 생성하였다. 또한, arginine과 histidine을 상기 유기산과 함께 넣었을 때 에틸렌 생성에 현저한 상승효과를 나타냈다. Cell-free system 에서는 $\alpha$-KG>Glu>citrate>Gln>Ser순으로 0.5mM $\alpha$-KG에서 310.8(nl.mg $protein^[-1}.h^[-1}$)로 가장 많은 에틸렌을 생성하였고, aminotransferse 억제제인 AOA를 사용해 본 결과, Glu는 glutamate dehydrogenase에 의하여 $\alpha$-KG를 거쳐서 에틸렌으로 전환된 것이라 생각된다.

  • PDF