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Abstract  1,4-Benzoquinone reductase was purified to electrophoretic homogeneity from bovine
liver, and the purified enzyme found to have a molecular mass of 29 kDa, as determined by so-
dium dodecyl sulfate- polyacrylamide gel electrophoresis. The enzyme exhibited pH optimum be-
tween 8.0 and 8.5. The apparent K for 1,4-benzoquinone was 1.643 mM, and the apparent Km
for NADH was 1.837 mM. Various divalent cations, such as Hg?*, Cu®* | and Zn’*, exhibited
strong inhibitory effects. The enzyme activity was also strongly inhibited by quercetin, dicumarol,
and benzoic acid. Incubation of the enzyme with N-bromosuccinimide and pyridoxal 5'-phosphate
led to inhibitions of 100% and 99%, respectively. Accordingly, these results suggest that trypto-
phan and lysine residues are involved at or near the active sites of the enzyme.
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INTRODUCTION

Quinones and related compounds have received con-
siderable attention recently, due to their widespread
environmental prevalence and toxicological potential.
Quinone reductase catalyzes the two-electron reduction
of quinones and quinonoid compounds to hydro-
quinones [1-9]. Current evidence favors the hypothesis
that quinone reductase is protective against quinone
and quinone imine toxicity, by virtue of the two-
electron reduction to hydroquinone, compared with the
one -electron reduction mediated by cytochrome-P450
reductase, which produces toxic and mutagenic free
radicals [10-14]. Quinone reductase is classified as a
phase II enzyme since the enzyme can convert reactive
electrophiles to less toxic products.

Quinone reductase is known to be a xenobiotic me-
tabolizing enzyme and is highly inducible in animals
following pretreatment with various xenobiotic chemi-
cals, including polycyclic aromatic hydrocarbons and
other planar aromatic compounds [15,16]. Quinone
reductase activity has also been shown to increase sev-
eral-fold in cultures of rat liver and human hepatoblas-
toma (Hep-G2) cells in response to 2,3,7,8-tetrachloro-
dibenzo-p-dioxin (dioxin) treatment. In the rat hepa-
toma cell line, quinone reductase mRNA is induced by
polycyclic aromatic hydrocarbons and other planar
aromatic compounds [17].

[t is widely recognized that biotransformation en:
zymes are concentrated in the liver, although they are
also found in most tissues. Broad substrate specificity is
a characteristic property of the xenobiotic-metabolizing
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enzymes. Azocompounds are used widely in the textile
food and cosmetic industries, yet certain azo com-
pounds have been shown to be toxic [18-21]. The first
step in the degradation of azo compounds is the cleav-
age of the azo bond by reductase [19,21,22].

The current author previously réported that bovine
liver quinone reductase could catalyze the reduction of
azo compound [23]. In that study, the reduction of an
azo compound was almost entirely inhibited by di-
cumarol, a potent inhibitor of quinone reductase. Ac-
cordingly, the current study reports on the characteri-
zation of 1,4-benzoquinone reductase purified from
bovine liver.

MATERIALS AND METHODS
Chemicals

1,4-Benzoquinone, diethylmalonic acid, dicumarol,
nitrofurantoin, 5,5'-dithiobis(2-nitrobenzoic acid), di-
phenic acid, N-ethylmaleimide, acetaldoxime, benzoic
acid, syn-benzaldehyde oxime, quercetin and pyrazole
were obtained from Aldrich. Coomassie brilliant blue G-
250 was from Bio-Rad. Phenylmethylsulfonyl fluoride,
N-bromosuccinimide, pyridoxal 5'-phosphate, NADH,
glycine, jodoacetamide, acrylamide, 2,2'-dipyridyl,
sephacryl, ethylenediamine tetraacetic acid (EDTA), N,
N, N', N'-tetramethylethylenediamine (TEMED), DEAE-
Sephacel, sucrose, N, N'-methylene-bisacrylamide, bro-
mophenol blue, molecular weight standard, Coomassie
brilliant blue R-250, bovine serum albumin, lauryl sul-
fate, and ammonium persulfate were obtained from
Sigma. All other chemicals were of the highest purity
grade commercially available.
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Activity Measurement

The standard reaction mixtures consisted of 25 mM
Tris-HCI buffer (pH 8.0), 250 pM 1,4-benzoquinone,
200 pM NADH and the enzyme. The reactions were
initiated by the addition of the enzyme. The decrease in
absorbance at 340 nm was monitored spectrophotomet-
rically [24]. The conditions for the specific reactions are
presented in the related Figure or Table legends.

Protein Determination and Electrophoresis

The protein concentration was determined according
to the method of Bradford [25], using bovine serum
albumin as a standard. The protein content in the frac-
tions collected during each chromatographic procedure
was determined by measuring the absorbance at 280
nm.

SDS-polyacrylamide gel electrophoresis was carried
out as described by Laemmli [26], and the gels were
stained with Coomassie brilliant blue R-250.

Enzyme Purification

1,4-Benzoquinone reductase was purified to electro-
phoretic homogeneity from bovine liver by the method
of Kim and Shin [23]. All procedures were carried out at
4°C unless otherwise stated. Bovine liver was homoge-
nized in 50 mM potassium phosphate buffer (pH 7.5)
containing 1 mM EDTA. The homogenate was then
centrifuged at 10,000 g for 15 min. Solid ammonium
sulfate was added to the supernatant to achieve 50%
saturation, then the suspension was stirred for 1 h, and
centrifuged at 20,000 g for 15 min. Additional amount
of solid ammonium sulfate was added to the super-
natant to make 75% saturation, then the mixture was
centrifuged as before. The precipitate was suspended in
10 mM potassium phosphate buffer (pH 7.0) containing
1 mM EDTA (buffer A), then the suspension was dia-
lyzed against the same buffer. The dialysate was loaded
to a CM-Sepharose column pre-equilibrated with buffer
A. The column was washed with buffer A until the pro-
tein content of the effluent returned to the baseline
level. Elution was carried out with a linear gradient of
0-0.5 M NaCl in buffer A. The active fractions were
pooled, concentrated, and then applied to a Sephacryl S-
200 column pre-equilibrated with buffer A. The frac-
tions containing 1,4-benzoquinone reductase activity
were pooled and the purified enzyme preparation was
used for further study.

RESULTS AND DISCUSSION

SDS-PAGE of the purified enzyme revealed a single
protein band. The molecular mass of the 14-
benzoquinone reductase purified from bovine liver was
calculated to be 29 kDa on the basis of its mobility rela-
tive to those of standard proteins (Fig. 1). This value is
somewhat higher than that for Phanerochaete chrysospo-
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Fig. 1. Determination of molecular weight of 1,4-benzoqui-
none reductase by SDS-polyacrylamide gel electrophoresis. 9%
acrylamide gel was used. A: bovine albumin (66 kDa), B:
glyceraldehyde-3-P-dehydrogenase (36 kDa), C: bovine car-
bonic anhydrase (29 kDa), D: bovine pancreas trypsinogen (24
kDa) and E: soybean trypsin inhibitor (20 kDa).
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Fig. 2. The Lineweaver-Burk plot showing the 1,4-benzoqui-
none reductase activity as a function of 1,4-benzoquinone
concentration. The reaction mixture contained 100 mM so-
dium phosphate buffer (pH 7.0), 200 pM NADH, purified
enzyme and varied concentrations of 1,4-benzoquinone.

rium quinone reductase, where the molecular mass of
the enzyme was estimated to be 22 kDa {27]. Activity
of the 1,4-benzoquinone reductase was tested using
different substrate concentrations. The data was plot-
ted according to Lineweaver and Burk, and the Micha-
elis-Menten constant, K, was calculated from the in-
tercept and the slope of the line (Figs. 2, 3). The Km
values for 1,4-benzoquinone and NADH were estimated
to be 1.643 mM and 1.837 mM, respectively (Table 1).
In the case of P.chrysosporium quinone reductase, the K |
values of the enzyme for 2-methoxy-1,4-benzo-quinone
and NADH were previously reported to be 2.4 pM and
55 uM, respectively [27].

The effects of various metal ions on the 1,4-benzo-
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Fig. 3. The Lineweaver-Burk plot showing the 1,4-benzoqui-
none reductase activity as a function of NADH concentration.
The reaction mixture contained 100 mM sodium phosphate
buffer (pH 7.0), 100 uM 1,4-benzoquinone, purified enzyme
and varied concentrations of NADH.

Table 1. Kinetic constants for the purified 1,4-benzoquinone
reductase toward 1,4-benzoquinone and NADH?

Km Vmax
Compound (mM) (umol/min/mg) Ve Ko
1,4-Benzoquinone 1.643 9.692 5.899
NADH 1.837 1.587 0.864

* Assays were carried out as described in the experimental section.
A tixed NADH concentration of 200 uM was used in determining
the K, for 1,4-benzoquinone. A fixed 1,4-benzoquinone concen-
tration of 100 pM was used in determining the K, for NADH.

Table 2. Effect of some metal ions on purified 1,4-benzo-
quinone reductase activity

Compound? Relative activity (%)

None 100
CuCl, 0.4

HgCl, 0

ZnCl, 26.7
SnCl, 96.9
BaCl, 111.1
MgCl, 88.4

* Concentration of the compound was 1 mM.

The reaction mixture contained 100 mM sodium phosphate
buffer (pH 7.0), 200 uM NADH, 100 pM 1,4-benzoquinone, 1
mM cation and the purified 1,4-benzoquinone reductase.

quinone reductase activity were examined. The concen-
trations of the metal ions tested were 1 mM in all cases.
As shown in Table 2, almost complete inhibition of the
1,4-benzoquinone reductase activity was observed with
Cu®* and Hg**. Zn®* had a significant inhibitory effect,
and the enzyme activity remained unaffected by Sn?*.
In contrast, P. chrysosporium quinone reductase was not
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Table 3. Effect of various inhibitors on 1,4-benzoquinone

reductase activity

Inhibitor Residual activity (%)

None 100
KCN 100.8
NaN, 104.1
Diethylmalonic acid 103.83
Pyrazole 93.7
2-Mercaptoethanol 0
Dicumarol 0
Quercetin 0
Nitrofurantoin 0
2,2"-Dipyridyl 84.7
Diphenic acid 91.4
N-ethylmaleimide 91.6
lodoacetamide 96.6
Acetaldoxime 105.9
Benzoic acid 14.6
syn-Benzaldehyde oxime 285

The reaction mixture contained 100 mM sodium phosphate
buffer (pH 7.0), 100 uM 1,4-benzoquinone, 200 uM NADH, 1
mM inhibitor and the purified enzyme. The results are expressed
as a percentage of the activity without inhibitor, with 100 repre-
senting no inhibition and 0 representing complete inhibition.
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Fig. 4. Effect of pH on the 1,4-benzoquinone reductase activ-
ity. The reaction mixture consisted of 100 uM 1,4-benzoqui-
none, 200 pM NADH, 10 mM buffer, and the purified en-
zyme. Glycine - HCI buffer was used from pH 4.0 to 4.5, po-
tassium phosphate buffer from pH 5.0 to 7.5 and Tris - HCI
butfer from pH 8.0 to 9.0.

inhibited by 1 mM concentrations of Cu’* or Zn**.
Benzoic acid and syn-benzaldehyde oxime exerted a
strong inhibitory effect along with dicumarol and
quercetin (Table 3).

The pH dependence of the purified enzyme is shown
in Fig. 4. The 1,4-benzoquinone reductase activity was
measured in the pH range of 4.0-9.0. Three different
buffers were used: glycine - HCI (pH 4.0-4.5), potassium
phosphate (pH 5.0-7.5), and Tris - HCI (pH 8.0-9.0). The
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Table 4. Effect of chemical modifiers on quinone reductase
activity

Chemical modifier Residual activity (%)

N-bromosuccinimide 0
Pyridoxal 5'-phosphate 0
Phenylmethylsulfonyl fluoride 48
N-ethylmaleimide 68
N-acetylimidazole 76

The enzyme was preincubated with various chemical modifiers at
room temperature for 5 min. The reaction mixture contained 100
mM sodium phosphate buffer (pH 7.0), 1 mM moedifier, 100 pM
1,4-benzoquinone, 200 uM NADH and purified enzyme.
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Fig. 5. Inactivation of 1,4-benzoquinone reductase by N-
bromosuccinimide. The purified enzyme was incubated with
1 mM N-bromosuccinimide in 100 mM sodium phosphate
buffer, pH 7.0, at room temperature. At time intervals, ali-
quots were removed for measurements of the residual enzyme
activity.

enzyme exhibited a rather broad pH optimum between
pH 8.0 and 8.5 in contrast to the P. chrysosporium
quinone reductase, which displayed a broad pH opti-
mum between pH 5.0 and 6.5 [5].

An investigation was conducted to examine the
amino acid residues at or near the active sites of the
enzyme, based on determining the residual activity af-
ter incubation with the group-specific potential inacti-
vators. Incubation of the enzyme with 1 mM N-
bromosuccinimide and pyridoxal &'-phosphate led to
inhibitions of 100% and 99%, respectively (Table 4, Fig.
5). However, incubation of the enzyme with 1 mM N-
acetylimidazole, N-ethylmaleimide or phenylmethylsul-
fonyl fluoride only led to a partial loss of activity (Ta-
ble 4). Even when the enzyme was incubated with N-
ethylmaleimide or N-acetylimidazole for 1 h, over 40%
of the enzyme activity still remained (Figs. 6, 7). Ac-
cordingly, these results suggest that tryptophan and
lysine residues are involved at or near the active sites of
the quinone reductase.
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Fig. 6. Effect of N-ethylmaleimide on 1,4-benzoquinone re-
ductase activity. The purified enzyme was incubated with 1
mM N-ethylmaleimide in 100 mM sodium phosphate buffer
(pH 7.0) at room temperature. At time intervals, aliquots
were removed for measurements of the residual enzyme activ-

ity.
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Fig. 7. Effect of N-acetylimidazole on 1,4-benzoquinone re-
ductase activity. The purified enzyme was incubated with 1
mM N-acetylimidazole in 100 mM sodium phosphate buffer
(pH 7.0) at room temperature. At time intervals, aliquots
were removed for measurements of the residual enzyme activ-

lty.
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