• Title/Summary/Keyword: Pyraclostrobin

Search Result 43, Processing Time 0.02 seconds

Foliar Application of the Fungicide Pyraclostrobin Reduced Bacterial Spot Disease of Pepper (Fungicide pyraclostrobin의 고추 세균점무늬병 예방효과)

  • Kang, Beom Ryong;Lee, Jang Hoon;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • v.24 no.1
    • /
    • pp.59-65
    • /
    • 2018
  • Pyraclostrobin is a broad-spectrum fungicide that inhibits mitochondrial respiration. However, it may also induce systemic resistance effective against bacterial and viral diseases. In this study, we evaluated whether pyraclostrobin enhanced resistance against the bacterial spot pathogen, Xanthomonas euvesicatora on pepper (Capsicum annuum). Although pyraclostrobin alone did not suppressed the in vitro growth of X. euvesicatoria, disease severity in pepper was significantly lower by 69% after treatments with pyraclostrobin alone. A combination of pyraclostrobin with streptomycin reduced disease by over 90% that of the control plants. The preventive control of the pyraclostrobin against bacterial spot was required application 1-3 days before pathogen inoculation. Our findings suggest that the fungicide pyraclostrobin can be used with a chemical pesticide to control bacterial leaf spot diseases in pepper.

Dissipation Pattern of Fungicides Boscalid and Pyraclostrobin in Jujube (대추 중 살균제 boscalid와 pyraclostrobin의 잔류 소실 특성)

  • Jo, Hyeong-Wook;Sohn, Sang-Hyun;Kim, Kyoung-Jin;Hwang, Gi-Jun;Jo, Beom-Haeng;Gil, Seok-Ju;Kwon, Chan-Hyeok;Moon, Joon-Kwan
    • The Korean Journal of Pesticide Science
    • /
    • v.21 no.1
    • /
    • pp.17-25
    • /
    • 2017
  • Dissipation pattern and biological half-lives of fungicides boscalid and pyraclostrobin were calculated on jujube. The pesticides were sprayed on jujube in two different field at the standard rate, respectively. The raw agricultural commodities were harvested at 0 (2 hr), 1, 3, 5, 7, 10 and 14 days after treatment, and analyzed by HPLC/DAD. The method limit of quantification (MLOQ) was $0.02mg\;kg^{-1}$ for boscalid and pyraclostrobin. The recovery ranged 101.8~109.3% with below 5% of CV (Coefficient of variation) for boscalid and 104.2~115.4% with below 5% of CV for pyraclostrobin. An average initial deposit at field 1 and field 2 samples were observed 0.40 and $0.48mg\;kg^{-1}$ for boscalid and, 0.76 and $0.57mg\;kg^{-1}$ for pyraclostrobin, respectively. The biological half-lives of field 1 and field 2 were 11.0 and 13.2 day for boscalid, and 6.1 and 12.7 days for pyraclostrobin.

Control Efficacy of the Mixture of Fluxapyroxad Plus Pyraclostrobin against Pear Scab Caused by Venturia nashicola (배 검은별무늬병에 대한 Fluxapyroxad/Pyraclostrobin 합제의 방제 효과)

  • Min, Kwang-Hyun;Ryu, Jeong-Pil;Kim, Ju-Mi;Kim, Sun-Hwa;Yim, Sun Hee;Choi, Jang Jeon;Cho, Baik Ho;Yang, Kwang-Yeol
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.434-438
    • /
    • 2014
  • The mixture of fluxapyroxad plus pyraclostrobin or the 9 time-spray schedule with various fungicides was evaluated for their efficacy in controlling pear scab in field trials. It showed sufficient condition to evaluate the efficacy of fungicides for the control of pear scab since disease incidence of the untreated control plot was 58.4% or 100% on leaves or fruits, respectively. Pear scab on leaves was occurred by 6.3% at treated plot with the mixture of fluxapyroxad plus pyraclostrobin, resulting in the 89.2% of control value. Incidence of the fruit disease was 16.7% at treated plot with the mixture of fluxapyroxad plus pyraclostrobin, showing 83.3% of control value. When the 9 time-spray schedule was tested, pear scab was occurred by 5% or 13.3% on leaves or fruits, respectively. Their control values were the 91.4% on leaves or 86.7% on fruits. Although the 9 time-spray schedule showed slightly lower disease incidence than the mixture of fluxapyroxad plus pyraclostrobin, but there is no statistically significant difference. These results suggest that the mixture of fluxapyroxad plus pyraclostrobin can control effectively the pear scab.

Fungicide Screening for Control of Summer Spinach Damping-off Caused by Rhizoctonia solani (Rhizoctonia solani에 의한 여름 시금치 잘록병의 방제를 위한 살균제 선발)

  • Kim, Byung-Sup;Yun, Yue-Sun;Yun, Choel-Soo;Zhang, Xuan-Zhe;Yeoung, Young-Rog;Hong, Sae-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.1
    • /
    • pp.35-40
    • /
    • 2005
  • Damping-off of summer spinach caused by Rhizoctonia solani AG-4 has become a very important disease. For the control of summer spinach damping-off, antifungal activity of thirteen fungicides (pencycuron, trifloxystrobin, pyraclostrobin, azoxystrobin, kresoxim-methyl, validamycin, fluazinam, Benlate-T, flutolanil, cyazofamid, hexaconazole, tebuconazole, prochloraz) were evaluated in vitro and in vivo. Pencycuron, pyraclostrobin, validamycin, fluazinam, Benlate-T, hexaconazole, tebuconazole, and flutolanil significantly suppressed the mycelial growth of the pathogenic fungus. However, trifloxystrobin, azoxystrobia kresoxim-methyl, cyazofamid, and prochloraz did not represent good inhibition on the growth of R. solani. When applied by soil drenching (2,000 mg/L), pencycuron, pyraclostrobin, validamycin, fluazinam, Benlate-T, and flutolanil provided spinach survival ratios of 97.8%, 84.4%, 93.3%, 95.6%, 91.1%, and 86.7%, respectively. Also when treated in seed at 2,000 ing/L, pencycuron and pyraclostrobin displayed survival ratios of more than 85.1%.

Cross-resistance of Colletotrichum acutatum s. lat. to Strobilurin Fungicides and Inhibitory Effect of Fungicides with Other Mechanisms on C. acutatum s. lat. Resistant to Pyraclostrobin (Strobilurin계 살균제에 대한 고추탄저병균의 교차저항성과 Pyraclostrobin 저항성균에 대한 다른 기작 살균제의 억제 효과)

  • Park, Subin;Kim, Heung Tae
    • Research in Plant Disease
    • /
    • v.28 no.3
    • /
    • pp.122-131
    • /
    • 2022
  • Colletotrichum acutatum s. lat. 20JDS8 sensitive and 20CDJ6 resistant to pylaclostrobin were used to investigate the cross-resistance with fungicides belonging to the strobilurins and the characteristics of fungicidal controlling activities with different mechanisms against the isolate resistant to the fungicide. The resistant isolate of 20CDJ6 also showed the resistance to azoxystrobin, trifloxystrobin, and kresoxim-methyl, suggesting that there is a cross-resistance relationship. All fungicides with different action mechanisms inhibited mycelial growth of both susceptible and resistant isolates of C. acutatum s. lat., but their disease control effects in fruits were different according to the fungicides. The disease control effect of isopyrazam against 20JDS8 and 20CDJ6 was very low, and fluazinam showed a control effect of 91.9% and 88.1% against 20JDS8 and 20CDJ6 only when it was treated before inoculation by spraying spore suspensions on pepper fruits without wounds. Tebuconazole and prochloraz effectively inhibited not only the mycelial growth of 20JDS8 and 20CDJ6 on potato dextrose agar medium, but also disease incidence in red pepper fruits. As a result of this study, C. acutatum s. lat. 20CDJ6 resistant to pyraclostrobin showed cross-resistance with other strobilurin fungicides. In addition, we think that fluazinam, tebuconazole, and prochloraz can be recommended as alternative fungicides for the control of red-pepper pyranthracnose pathogens resistant pyraclostrobin. However, fluazinam can be effective only if it is treated protectively before the occurrence of the disease.

Residue Characteristics and Risk Assessment of Pesticides (Boscalid and Pyraclostrobin) in Hylomecon vernalis (피나물 중 boscalid 및 pyraclostrobin의 토양 처리시 잔류특성 및 안전성 평가)

  • Yu, Ji-Woo;Song, Min-Ho;Kim, Jinchan;Lee, Kwanghun;Ko, Rakdo;Keum, Young-Soo;Lee, Jiho
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.2
    • /
    • pp.95-100
    • /
    • 2022
  • BACKGROUND: This study was aimed to determine characteristics of residues of the soil-treated boscalid and pyraclostrobin within Hylomecon vernalis and to evaluate the risks from intake of the residual pesticides in the crop. METHODS AND RESULTS: The pesticides were treated to soils at two different concentrations, and the plant samples were collected 57 days after seeding. The samples were extracted using the QuEChERS extraction kit (MgSO4 4 g, NaCl 1 g). The quantitative methods for boscalid and pyraclostrobin were validated using linearity, recovery, and CV (coefficient of variation). Risk assessment of the pesticides was performed using Korea national nutrition statistics 2019. CONCLUSION(S): The residual levels of boscalid were 0.02-0.05 mg/kg (for the treatment at 6 Kg/10a) and 0.05-0.08 mg/kg (for the treatment at 12 Kg/10a), respectively. The residual concentrations of pyraclostrobin were below the LOQ. The amounts of pesticides were less than Maximum Residue Limits specified by the Korean Ministry of Food and Drug Safety. The maximum hazard indices of boscalid in chwinamul and amaranth for consumers were 0.0075% and 0.1525%, respectively, and it indicates that the risk of the pesticides from the crop is considered to be low.

The Residue Property of Fungicide Dimethomorph and Pyraclostrobin in Green Onion under Greenhouse Condition (시설재배 쪽파에서 살균제 Dimethomorph와 Pyraclostrobin의 잔류특성)

  • Park, Jong-Woo;Kim, Tae-Hwa;Chae, Seok;Sim, Jae-Ryoung;Bae, Byung-Jin;Lee, Hae-Kuen;Son, Kyeong-Ae;Im, Geon-Jae;Kim, Jin-Bae;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.4
    • /
    • pp.328-335
    • /
    • 2012
  • In order to use in the classification of minor crop for the mutual application of safe use guideline, it was investigated the residue property of fungicide dimethomorph and pyraclostrobin in green onion, a stem-crop. After pesticides were applied 2 times with 1 week interval in that day of harvest, 3 days, 7 days, 10 days and 14 days before harvest, a green onion was harvested. The residue of dimethomorph in a green onion was 26.31 and 39.08 mg/kg in that day of harvest, however, in according to elapse time, it was reduced to 6.86 and 9.34 mg/kg in 14 days before harvest. In case of pyraclostrobin, it was also reduced from 13.46 and 39.08 mg/kg to 3.57 and 5.21 mg/kg. Based on the residue in that day of harvest, the deposit of spray solution in a green onion was calculated. The deposit of spray solution of dimethomorph was 274.35~345.84 mL/kg, in case of pyraclostrobin, it was calculated 213.65~343.33 mL/kg. When the amount of the deposit of both pesticides was compared in a green onion, it was so similar. On the other hand, it was estimated the predicted dissipation curve of pesticides in the green onion during cultivation. The half-life of dimethomorph was 6.95~7.45 days, in case of pyraclostrobin, 7.15~7.45 days. When both pesticides were compared with the residue property, the deposit of spray solution and half-life of dissipation were so similar.

Control Effect of Alternative Fungicide Spraying System on Powdery Mildew Caused by Podosphaera xanthii on Greenhouse Cucumber (약제교호살포에 따른 시설재배 오이 흰가루병(Podosphaera xanthii) 방제효과)

  • Park, Se-Keun;Park, Bue-yong;Jeong, In-Hong;Jeon, Sung-wook;Ryu, Hyun-ju;Lee, Sang-bum
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.538-543
    • /
    • 2018
  • Powdery mildew caused by Podosphaera xanthii is a disease in cucurbit crops especially in green house. The objective of this study was to determine the effect of alternative fungicide spraying system for control of powdery mildew disease. We selected four fungicides with different mode of action and made three treatment combinations of each fungicide in 2017. Pyraclostrobin-flutianyl-penthiopyrad treatment showed the highest control value (87%) while, pyraclostrobin-pyraclostrobin-pyraclostrobin treatment showed the lowest control value (32.5%). So it seemed like the treatment was not suitable for control of powdery mildew. In 2018, pyraclostrobin of pyraclostrobin-flutianyl-penthiopyrad was replaced to contact fungicide called iminoctadine-tris-albesilate and compared control effect of two treatments. Two of the treatments showed similar control value (87.0% for pyraclostrobin, 89.0% for iminoctadine-tris-albesilate). These two tests in 2017 and 2018 indicated that alternative treatment of different fungicides is essential for controlling of powdery mildew and inhibiting development of fungicide resistance.

Cytochrome b Gene-Based Assay for Monitoring the Resistance of Colletotrichum spp. to Pyraclostrobin

  • Dalha Abdulkadir, Isa;Heung Tae, Kim
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.616-628
    • /
    • 2022
  • Resistance to pyraclostrobin due to a single nucleotide polymorphism at 143rd amino acid position on the cytochrome b gene has been a major source of concern in red pepper field infected by anthracnose in Korea. Therefore, this study investigated the response of 24 isolates of C. acutatum and C. gloeosporioides isolated from anthracnose infected red pepper fruits using agar dilution method and other molecular techniques such as cytochrome b gene sequencing, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), and allele-specific polymerase chain reaction (PCR). The result showed that four isolates were resistant to pyraclostrobin on agar dilution method and possessed GCT (alanine) codon at 143rd amino acid position, whereas the sensitive isolates possessed GGT (glycine). Furthermore, this study illustrated the difference in the cytochrome b gene structure of C. acutatum and C. gloeosporioides. The use of cDNA in this study suggested that the primer Cacytb-P2 can amplify the cytochrome b gene of both C. acutatum and C. gloeosporioides despite the presence of various introns in the cytochrome b gene structure of C. gloeosporioides. The use of allele-specific PCR and PCR-RFLP provided clear difference between the resistant and sensitive isolates. The application of molecular technique in the evaluation of the resistance status of anthracnose pathogen in red pepper provided rapid, reliable, and accurate results that can be helpful in the early adoption of fungicide-resistant management strategies for the strobilurins in the field.

Residues Analysis of Acetamiprid, Boscalid, Imidacloprid and Pyraclostrobin in the Minor Crop Mustard Green under Greenhouse Conditions for Evaluation of their Potentiality of PLS Violation

  • Kim, Young Eun;Kim, Seon Wook;Lim, Da Jung;Kim, In Seon
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.214-221
    • /
    • 2020
  • BACKGROUND: The demand for pesticide registration has kept increasing for minor crop cultivation in greenhouse since Positive List System (PLS) has been launched. Thus, much study on the evaluation of pesticide residues in minor crops is required to examine the demand. In this study, we evaluated residues of acetamiprid, boscalid, imidacloprid and pyraclostrobin in the minor crop mustard green to provide the potential data for their registration. METHODS AND RESULTS: Pesticide granule formulations of acetamiprid, boscalid, imidacloprid and pyraclostrobin were incorporated into soil and applied onto field soil surface at rates of 3 kg/10a, 6 kg/10a, 3 kg/10a and 6 kg/10a, respectively. The pesticides were also applied at the two times higher than the rates to compare the residues between the application rates. Mustard green seeds were sown 1 day after pesticide application and cultivated under greenhouse conditions. LC/MS/MS analyses coupled with a modified QuEChERs method were employed for determination of the pesticides in plant samples. The method limits of quantitation (LOQ) of the pesticides were 0.01 mg/kg, and the matrix calibration curves of the pesticides showed linearity with coefficient values of determination (r2) greater than 0.995. The average recovery values of the pesticides fortified in control samples at rates of LOQ and 10LOQ ranged from approximately 77.5% to 101.2% with relative standard deviation values lower than 14%. The pesticides in the mustard green samples cultivated for 53 days after sown were determined to be lower than the LOQ level. CONCLUSION: Acetamiprid, boscalid, imidacloprid and pyraclostrobin were found at a level lower than 0.01 mg/kg in the minor crop mustard green. Thus, their residues in mustard green would not violate PLS under greenhouse conditions.