• 제목/요약/키워드: Pure Potential

검색결과 446건 처리시간 0.027초

전리수를 이용한 Si 웨이퍼 세정의 IR 특성연구 (A Study on IR Characterization of Electrolyzed Water for Si Wafer Cleaning)

  • Byeongdoo Kang;Kunkul Ryoo
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2001년도 춘계학술대회 발표논문집
    • /
    • pp.124-128
    • /
    • 2001
  • A present semiconductor cleaning technology is based upon RCA cleaning technology which consumes vast amounts of chemicals and ultra pure water(UPW) and is the high temperature Process. Therefore, this technology gives rise to the many environmental issues, and some alternatives such as functional water cleaning are being studied. The electrolyzed water was generated by an electrolysis system which consists of anode, cathode, and middle chambers. Oxidative water and reductive water were obtained in anode and cathode chambers, respectively. In case of NH$_4$Cl electrolyte, the oxidation-reduction potential and pH for anode water(AW) and cathode water(CW) were measured to be +1050mV and 4.8, and -750mV and 10.0, respectively. AW and CW were deteriorated after electrolyzed, but maintained their characteristics for more than 40 minutes sufficiently enough for cleaning. Their deterioration was correlated with CO$_2$ concentration changes dissolved from air. It was known that AW was effective for Cu removal, while CW was more effective for Fe removal. The particle distributions after various particle removal processes maintained the same pattern. In this work, RCA consumed about 9$\ell$chemicals, while EW did only 400$m\ell$ HCI electrolyte or 600$m\ell$ NH$_4$Cl electrolyte. It was hence concluded that EW cleaning technology would be very effective for eliminating environment, safety, and health(ESH) issues in the next generation semiconductor manufacturing.

One-step Physical Method for Synthesis of Cu Nanofluid in Ethylene Glycol

  • Bac, L.H.;Yun, K.S.;Kim, J.S.;Kim, J.C.;Rhee, C.K.
    • 한국분말재료학회지
    • /
    • 제17권6호
    • /
    • pp.464-469
    • /
    • 2010
  • The Cu nanofluid in ethylene glycol was prepared by electrical explosion of wire, a novel one-step method. The X-ray diffraction, field emission scanning electron microscope and transmission electron microscope were used to study the properties of Cu nanoparticles. The results showed that the nanoparticles were consisted of pure face-centered cubic structure and near spherical shape with average grain size of 65 nm. Ultraviolet-visible spectroscopy (UV-Vis) confirmed Cu nanoparticles with a single absorbance peak of Cu surface plasmon resonance band at 600 nm. The nanofluid was found to be stable due to high positive zeta potential value, +51 mV. The backscattering level of nanofluid in static stationary was decreased about 2% for 5 days. The thermal conductivity measurement showed that Cu-ethylene glycol nanofluid with low concentration of nanoparticles had higher thermal conductivity than based fluid. The enhancement of thermal conductivity of nanofluid at a volume fraction of 0.1% was approximately 5.2%.

R-L부하를 가진 구형파 VSI의 전압크기 제어 (Voltage Amplitude Control of Square-Wave VSIs with an R-L Load)

  • 김경원;홍순찬;유종걸;김상균;박채운
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.479-482
    • /
    • 2001
  • This paper proposes a modified $\alpha$ conduction mode for controlling the output voltage magnitude of three-phase square-wave VSIs with an R-L load. From the viewpoint of both power capacity and switching losses, three-phase square-wave inverters are now used in most high power systems. When the square-wave VSI is driven with $\alpha$ conduction mode to control the magnitude of output voltages, interval over than half period is operated with $180^{\circ}$ conduction mode and the other interval with $120^{\circ}$ conduction mode. In $120^{\circ}$ conduction mode operation, two output terminals are connected to DC supply and the third one remains open. The potential of this open terminal will depend on the load characteristics and is unpredictable except the case of pure resistive loads. To cope this problem, we propose the modified α conduction mode.

  • PDF

Phytochemical Screening, Isolation, Characterization of Bioactive and Biological Activity of Bungkang, (Syzygium polyanthum) Root-bark Essential Oil

  • Umaru, Isaac John;Umaru, Kerenhappuch I.;Umaru, Hauwa A.
    • 식품보건융합연구
    • /
    • 제6권3호
    • /
    • pp.5-21
    • /
    • 2020
  • Bungkang (Syzygium polyanthum) is a medium to tall plant which produces medicinal root-bark, the plant is normally found along inland river bank and produces small white flowers and fruits. Essential oils are among the most interesting components of the plant extracts consisting mostly of monoterpenoid or sesquiterpenoids. They are used as therapeutic agents in ethno, conventional, and complementary alternative medicines. Investigation and evaluation of the essential oil of Syzygium polyanthum as well as the antibacterial, antioxidant and antifungal activity was ascertained. The experiment was performed. 100 chemical constituents were obtained and two pure compound was isolated as Eugenol (1) and Farnesol (2). Significant growth inhibition of Staphylococcus aureus, (ATCCⓒ25923) Klebsiellia pneumonia (ATCCⓒ19155), Salmonella typhi (ATCCⓒ14028) and Escherichia coli (ATCC©25922) and the fungal strains Aspergillus flavin, Aspergillus niger, Candida, tropicalis, and Fusarium oxysporium was observed from the essential oil at concentration of 500 ㎍/mL. Antioxidant potential was observed to be strong of 18.42 ㎍/mL when compared to the control of 15.23 ㎍/mL. The result indicated that the oil obtained from root-bark of Syzygium polyanthum can be considered as an agent for antioxidant, antibacterial and antifungal in pharmaceutical food and cosmetic industries trails.

혼합 상의 바나듐 산화물 박막 제작 및 에탄올 가스 감지 특성 연구 (Synthesis of Mixed Phase Vanadium Oxides Thin Films and Their Ethanol Gas Sensing Properties)

  • 한수덕;강종윤
    • 한국전기전자재료학회논문지
    • /
    • 제31권1호
    • /
    • pp.29-33
    • /
    • 2018
  • Using a vanadium dioxide ($VO_2$) source, highly pure and amorphous vanadium oxide (VO) thin films were deposited using an e-beam evaporator at room temperature and high vacuum (<$10^{-7}$ Torr). Then, by controlling the post-annealing conditions such as $N_2:O_2$ pressure ratio and annealing time, we could easily synthesize a homogeneous $VO_2$ thin film and also mixed-phase VO thin films, including $VO_2$, $V_2O_5$, $V_3O_7$, $V_5O_9$, and $V_6O_{13}$. The crystallinity and phase of these were characterized by X-ray diffraction, and the surface morphology by FE-SEM. Moreover, the electrical properties and ethanol sensing measurements of the VO thin films were analyzed as a function of temperature. In general, mixed-phases as a self-doping effect have enhanced electrical properties, with a high carrier density and an enhanced response to ethanol. In summary, we developed an easy, scalable, and reproducible fabrication process for VO thin films that is a promising candidate for many potential electrical and optical applications.

인덕턴스 측정에 의한 윤활유 내 자성입자 정량적 평가 (Monitoring Inductance Change to Quantitatively Analyze Magnetic Wear Debris in Lubricating Oil)

  • 구희조;안효석
    • Tribology and Lubricants
    • /
    • 제32권6호
    • /
    • pp.189-194
    • /
    • 2016
  • Wear debris in lubricating oil can be indicative of potential damage to mechanical parts in rotating and reciprocating machinery. Therefore, on-line or in-line monitoring of lubricating components in machinery is of great importance. This work presents a device based on inductive measurement of lubricating oil to detect magnetic wear particles in a tested volume. The circuit in the device consists of Maxwell Bridge and LVDT to measure inductance differences between pure and contaminated oil. The device detects the passage of ferrous particles by monitoring inductance change in a coil. The sensing principle is initially demonstrated at the microscale using a solenoid. The device is then tested using iron particles ranging from $50{\mu}m$ to $100{\mu}m$, which are often found in severely worn mechanical components. The test results show that the device is capable of detecting and distinguishing ferrous particles in lubricating oil. The design concept demonstrated here can be extended to an in-line monitoring device for real-time monitoring of ferrous debris particles. A simulation using the CST code is performed to better understand the inductive response in the presence of magnetic bodies in the oil. The CST simulation further verifies the effectiveness of inductance measurement for monitoring magnetic particles within a tube.

미세 홀 어레이 펀칭 가공 (Punching of Micro-Hole Array)

  • 손영기;오수익;임성한
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 금형가공,미세가공,플라스틱가공 공동 심포지엄
    • /
    • pp.193-197
    • /
    • 2005
  • This paper presents a method by which multiple holes of ultra small size can be punched simultaneously. Silicon wafers were used to fabricate punching die. Workpiece used in the present investigation were the rolled pure copper of $3{\mu}m$ in thickness and CP titanium of $1.5{\mu}m$ in thickness. The metal foils were punched with the dies and arrays of circular and rectangular holes were made. The diameter of holes ranges from $2-10{\mu}m$. The process set-up is similar to that of the flexible rubber pad forming or Guerin process. Arrays of holes were punched successfully in one step forming. The punched holes were examined in terms of their dimensions, surface qualities, and potential defect. The effects of the die hole dimension on ultra small size hole formation of the thin foil were discussed. The optimum process condition such as proper die shape and diameter-thickness ratio (d/t) were also discussed. The results in this paper show that the present method can be successfully applied to the fabrication of ultra small size hole array in a one step operation.

  • PDF

PCR Diagnosis of Entamoeba histolytica Cysts in Stool Samples

  • Moon, Joung-Ho;Cho, Shin-Hyeong;Yu, Jae-Ran;Lee, Won-Ja;Cheun, Hyeng-Il
    • Parasites, Hosts and Diseases
    • /
    • 제49권3호
    • /
    • pp.281-284
    • /
    • 2011
  • Amebiasis is a protozoan disease caused by Entamoeba histolytica and a potential health threat in areas where sanitation and hygiene are inappropriate. Highly sensitive PCR methods for detection of E. histolytica in clinical and environmental samples are extremely useful to control amebiasis and to promote public health. The present study compared several primer sets for small subunit (SSU) rDNA and histone genes of E. histolytica cysts. A 246 bp of the SSU rDNA gene of pure cysts contained in phosphate-buffered saline (PBS) and in stool samples was successfully amplified by nested PCR, using the 1,147-246 bp primer set, of the primary PCR products which were pre-amplified using the 1,147 bp primer as the template. The detection limit of the nested PCR using the 1,147-246 primer set was 10 cysts in both groups (PBS and stool samples). The PCR to detect histone gene showed negative results. We propose that the nested PCR technique to detect SSU rDNA can be used as a highly sensitive genetic method to detect E. histolytica cysts in stool samples.

산화아연 나노와이어의 압전거동에 대한 분석 (Finite Element Analysis of the Piezoelectric Behavior of ZnO Nanowires)

  • 이웅
    • 한국재료학회지
    • /
    • 제28권11호
    • /
    • pp.671-679
    • /
    • 2018
  • Finite element analyses are carried out to understand the piezoelectric behaviors of ZnO nanowires. Three different types of ZnO nanowires, with aspect ratios of 1:2. 1:31, and 1:57, are analyzed for uniaxial compression, pure bending, and buckling. Under the uniaxial compression with a strain of $1.0{\times}10^{-4}$ as the reference state, it is predicted that all three types of nanowires develop the same magnitude of the piezoelectric fields, which suggests that longer nanowires exhibit higher piezoelectric potential. However, this prediction is not in agreement with the experimental results previously reported in the literature. Such discrepancy is understood when the piezoelectric behaviors under bending and buckling are considered. When only the strain field due to bending is present in bending or buckling, the antisymmetric nature of the through-thickness stain distribution indicates that two piezoelectric fields, the same in magnitude and opposite in sign, develop along the thickness direction, which cancels each other out, resulting in a zero net piezoelectric field. Once additional strain contribution due to axial deformation is superposed on the bending, such field cancelling is compensated for due to the axial component of the piezoelectric field. Such numerical predictions seem to explain the reported experimental results while providing a guideline for the design of nanowire-based piezoelectric devices.

Hypergraph Game Theoretic Solutions for Load Aware Dynamic Access of Ultra-dense Small Cell Networks

  • Zhu, Xucheng;Xu, Yuhua;Liu, Xin;Zhang, Yuli;Sun, Youming;Du, Zhiyong;Liu, Dianxiong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.494-513
    • /
    • 2019
  • A multi-channel access problem based on hypergraph model in ultra-dense small cell networks is studied in this paper. Due to the hyper-dense deployment of samll cells and the low-powered equipment, cumulative interference becomes an important problem besides the direct interference. The traditional binary interference model cannot capture the complicated interference relationship. In order to overcome this shortcoming, we use the hypergraph model to describe the cumulative interference relation among small cells. We formulate the multi-channel access problem based on hypergraph as two local altruistic games. The first game aims at minimizing the protocol MAC layer interference, which requires less information exchange and can converge faster. The second game aims at minimizing the physical layer interference. It needs more information interaction and converges slower, obtaining better performance. The two modeled games are both proved to be exact potential games, which admit at least one pure Nash Equilibrium (NE). To provide information exchange and reduce convergecne time, a cloud-based centralized-distributed algorithm is designed. Simulation results show that the proposed hypergraph models are both superior to the existing binary models and show the pros and cons of the two methods in different aspects.