Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.11.671

Finite Element Analysis of the Piezoelectric Behavior of ZnO Nanowires  

Lee, Woong (School of Materials Science and Engineering, Changwon National University)
Publication Information
Korean Journal of Materials Research / v.28, no.11, 2018 , pp. 671-679 More about this Journal
Abstract
Finite element analyses are carried out to understand the piezoelectric behaviors of ZnO nanowires. Three different types of ZnO nanowires, with aspect ratios of 1:2. 1:31, and 1:57, are analyzed for uniaxial compression, pure bending, and buckling. Under the uniaxial compression with a strain of $1.0{\times}10^{-4}$ as the reference state, it is predicted that all three types of nanowires develop the same magnitude of the piezoelectric fields, which suggests that longer nanowires exhibit higher piezoelectric potential. However, this prediction is not in agreement with the experimental results previously reported in the literature. Such discrepancy is understood when the piezoelectric behaviors under bending and buckling are considered. When only the strain field due to bending is present in bending or buckling, the antisymmetric nature of the through-thickness stain distribution indicates that two piezoelectric fields, the same in magnitude and opposite in sign, develop along the thickness direction, which cancels each other out, resulting in a zero net piezoelectric field. Once additional strain contribution due to axial deformation is superposed on the bending, such field cancelling is compensated for due to the axial component of the piezoelectric field. Such numerical predictions seem to explain the reported experimental results while providing a guideline for the design of nanowire-based piezoelectric devices.
Keywords
zinc oxide(ZnO); nanostructure; piezoelectricity; energy harvesting;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Janotti and C. G. Van de Walle, Rep. Prog. Phys., 72, 126501 (2009).   DOI
2 C. W. Litton, D. C. Reynolds and T. C. Collins, Zinc Oxide Materials for Electronic and Optoelectronic Device Applications, 1st ed., p. 265, John Wiley & Sons, New York (2011).
3 U. Ozgur, D. Hofstetter and H. Morkoc, Proc. IEEE, 98, 1255 (2010).
4 A. B. Djurisic, A. M. C. Ng and X. Y. Chen, Prog. Quant. Electr., 34, 191 (2010).   DOI
5 S. Bagga, J. Akhtar and S. Mishra, AIP Conf. Proc., 1989, 020004 (2018).
6 R. Zhu and R. Yang, Synthesis and Characterization of Piezotronic Materials for Application in Strain/Stress Sensing, p. 39, Springer Nature, Cham, Switzerland (2018).
7 S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang and Z. L. Wang, Nat. Nanotechnol., 5, 366 (2010).   DOI
8 H. J. Lee, S. Y. Chung, Y. S. Kim and T. I. Lee, Nano Energy, 38, 232 (2017).   DOI
9 B. Kumar, K. Y. Lee, H. K. Park, S. J. Chae, Y. H. Lee and S. W. Kim, ACS Nano, 5, 4197 (2011).   DOI
10 Y. Hu, L. Lin, Y. Zhang and Z. L. Wang, Adv. Mater., 24, 110 (2012).   DOI
11 L. Lin, Y. Hu, C. Xu, Y. Zhang, R. Zhang, X. Wen and Z. L. Wang, Nano Energy, 2, 75 (2013).   DOI
12 S. Lee, S. H. Bae, L. Lin, Y. Yang, C. Park, S. W. Kim, S. N. Cha, H. Kim, Y. J. Park and Z. L. Wang, Adv. Funct. Mater., 23, 2445 (2013).   DOI
13 C. Liu, A. Yu, M. Peng, M. Song, W. Liu, Y. Zhang and J. Zhai, J. Phys. Chem. C, 120, 6971 (2016).   DOI
14 Y. Zhang, C. Liu, J. Liu, J. Xiong, J. Liu, K. Zhang, Y. Liu, M. Peng, A. Yu, A. Zhang, Y. Zhang, Z. Wang, J. Zhai and Z. L. Wang, ACS Appl. Mater. Interfaces, 8, 1381 (2016).   DOI
15 M. Son, H. Jang, M.-S. Lee, T.-H. Yoon, B. H. Lee, W. Lee and M.-H. Ham, Adv. Mater. Technol., 3, 1700355 (2018).   DOI
16 L. Serairi, D. Yu and Y. Leprince-Wang, Phys. Status Solidi C, 13, 1 (2016).
17 A. Asthana, H. A. Ardakani, Y. K. Yap and R. S. Yassar, J. Mater. Chem. C, 2, 3995 (2014).   DOI
18 Y. Gao and Z. L. Wang, Nano Lett., 7, 2499 (2007).   DOI
19 C. Majidi, M. Haataja and D. J. Srolovitz, Smart Mater. Struct., 19, 055027 (2010).   DOI
20 ABAQUS 2017, Dassault Systemes, Velizy-Villacoublay, France (2016).
21 M. de Jong, W. Chen, H. Geerlings, M. Asta and K. A. Persson, Sci. Data, 2, 150053 (2015).   DOI
22 X. Li, Y. Chen, A. Kumar, A. Mahmoud, J. A. Nychka and H. J. Chung, ACS Appl. Mater. Interfaces, 7, 20753 (2015).   DOI
23 W. H. H. Oo, L. V. Saraf, M. H. Engelhard, V. Shuttanandan, L. Bergman, J. Huso, and M. D. McCluskey, J. Appl. Phys., 105, 013715 (2009).   DOI
24 K. Nakamura, S. Higuchi and T. Ohnuma, J. Appl. Phys., 119, 114102 (2016).   DOI
25 E. J. Hearn, Mechanics of Materials Volume 2: An Introduction to The Mechanics of Elastic and Plastic Deformation of Solids and Structural Components, 2nd ed., p. 457, Butterworth-Heinemann, Oxford, England (1985).