Browse > Article
http://dx.doi.org/10.4313/JKEM.2018.31.1.29

Synthesis of Mixed Phase Vanadium Oxides Thin Films and Their Ethanol Gas Sensing Properties  

Han, Soo Deok (Center for Electronic Materials, Korea Institute of Science and Technology (KIST))
Kang, Chong-Yun (Center for Electronic Materials, Korea Institute of Science and Technology (KIST))
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.31, no.1, 2018 , pp. 29-33 More about this Journal
Abstract
Using a vanadium dioxide ($VO_2$) source, highly pure and amorphous vanadium oxide (VO) thin films were deposited using an e-beam evaporator at room temperature and high vacuum (<$10^{-7}$ Torr). Then, by controlling the post-annealing conditions such as $N_2:O_2$ pressure ratio and annealing time, we could easily synthesize a homogeneous $VO_2$ thin film and also mixed-phase VO thin films, including $VO_2$, $V_2O_5$, $V_3O_7$, $V_5O_9$, and $V_6O_{13}$. The crystallinity and phase of these were characterized by X-ray diffraction, and the surface morphology by FE-SEM. Moreover, the electrical properties and ethanol sensing measurements of the VO thin films were analyzed as a function of temperature. In general, mixed-phases as a self-doping effect have enhanced electrical properties, with a high carrier density and an enhanced response to ethanol. In summary, we developed an easy, scalable, and reproducible fabrication process for VO thin films that is a promising candidate for many potential electrical and optical applications.
Keywords
Vanadium oxides; Thin film; Mixed phase; Physical vapor deposition; Gas sensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Schwab, The Fourth Industrial Revolution (The Crown Publishing Group, USA, 2017).
2 J. G. Bednorz and K. A. Muller, Z. Phys. B - Condensed Matter, 64, 189 (1986). [DOI: https://doi.org/10.1007/BF01303701]   DOI
3 D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, Nat. Commun., 2, 596 (2011). [DOI: https://doi.org/10.1038/ncomms1602]   DOI
4 J. Maciejko and G. A. Fiete, Nat. Phys., 11, 385 (2015). [DOI: https://doi.org/10.1038/NPHYS3311]   DOI
5 M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys., 70, 1039 (1998). [DOI: https://doi.org/10.1103/RevModPhys.70.1039]   DOI
6 Z. Yang, C. Ko, and S. Ramanathan, Annu. Rev. Mater. Res., 41, 337 (2011). [DOI: https://doi.org/10.1146/annurevmatsci-062910-100347]   DOI
7 C. Wu, F. Feng, and Y. Xie, Chem. Soc. Rev., 42, 5157 (2013). [DOI: https://doi.org/10.1039/C3CS35508J]   DOI
8 Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, Nano Energy, 1, 221 (2012). [DOI: https://doi.org/10.1016/j.nanoen.2011.12.002]   DOI
9 Y. Yue and H. Liang, Adv. Energy Mater., 7, 1602545 (2017). [DOI: https://doi.org/10.1002/aenm.201602545]   DOI
10 G. Micocci, A. Serra, A. Tepore, S. Capone, R. Rella, and P. Siciliano, J. Vac. Sci. Technol., A, 15, 34 (1997). [DOI: https://doi.org/10.1116/1.580471]   DOI
11 H. Takagi and H. Y. Hwang, Science, 327, 1601 (2010). [DOI: https://doi.org/10.1126/science.1182541]   DOI
12 A. Subrahmanyam, Y.B.K. Reddy, and C. L. Nagendra, J. Phys. D: Appl. Phys., 41, 195108 (2008). [DOI: https://doi.org/10.1088/0022-3727/41/19/195108]   DOI
13 S. D. Han, H. G. Moon, M. S. Noh, J. J. Pyeon, Y. S. Shim, S. Nahm, J. S. Kim, K. S. Yoo, and C. Y. Kang, Sens. Actuators, B, 241, 40 (2017). [DOI: https://doi.org/10.1016/j.snb.2016.10.029]   DOI