• Title/Summary/Keyword: Pupil imaging

Search Result 39, Processing Time 0.031 seconds

Design of Projection Optical System for Target Imaging Simulator with Long Exit Pupil Distance

  • Xueyuan Cao;Lingyun Wang;Guangxi Li;Ru Zheng
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.745-754
    • /
    • 2023
  • In order to test the recognition ability and accuracy of a target imaging simulator under the irradiation of solar stray light in a laboratory environment, it needs to be fixed on a five-axis turntable during a hardware-in-the-loop simulation test, so the optical system of the simulator should have a long exit pupil distance. This article adopts a secondary imaging method to design a projection optical system suitable for thin-film-transistor liquid crystal displays. The exit pupil distance of the entire optical system is 1,000 mm, and the final optimization results in the 400 nm-850 nm band show that the modulation transfer function (MTF) of the optical system is greater than 0.8 at the cutoff frequency of 72 lp/mm, and the distortion of each field of view of the system is less than 0.04%. Combined with the design results of the optical system, TracePro software was used to model the optical system, and the simulation of the target imaging simulator at the magnitude of -1 to +6 Mv was analyzed and verified. The magnitude error is less than 0.2 Mv, and the irradiance uniformity of the exit pupil surface is greater than 90%, which meets the requirements of the target imaging simulator.

Converting a Lens to Its Equivalent as Referenced to Pupil Imaging (동의 결상을 기준으로 한 등가렌즈 변환에 대한 연구)

  • Bang, Hyun Jin;Lee, Jong Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.1
    • /
    • pp.14-20
    • /
    • 2014
  • The equivalent of a thick lens is a lens which has the same power of refraction and paraxial imaging characteristics for a reference ray, but with a different axial thickness. In this study, thick lenses of an optical system were converted to their equivalent lenses referenced to pupil imaging. Aberration changes due to the lens conversion were compared to the general equivalent lens conversion referenced to object imaging.

Phase Only Pupil Filter Design Using Zernike Polynomials

  • Liu, Jiang;Miao, Erlong;Sui, Yongxin;Yang, Huaijiang
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.101-106
    • /
    • 2016
  • A pupil filter is a useful technique for modifying the light intensity distribution near the focus of an optical system to realize depth of field (DOF) extension and superresolution. In this paper, we proposed a new design of the phase only pupil filter by using Zernike polynomials. The effect of design parameters of the new filters on DOF extension and superresolution are discussed, such as defocus Strehl ratio (S.R.), superresolution factor (G) and relative first side lobe intensity (M). In comparison with the other two types of pupil filters, the proposed filter presents its advantages on controlling both the axial and radial light intensity distribution. Finally, defocused imaging simulations are carried out to further demonstrate the effectiveness and superiority of the proposed pupil filter on DOF extension and superresolution in an optical imaging system.

Strehl ratio and marechal criterion for gaussian pupil imaging system (가우스 동 결상계에 대한 Strehl Ratio와 Marechal 한계)

  • 송영란;이민희;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.227-230
    • /
    • 1998
  • The Strehl ratio(SR) expressions are derived from the diffration intensity distribution in a Gaussian pupil imaging system, and Marechal criterion is applied for the case of astigmatism aberration first and then to all the rest of the Seidel 1st order aberrations. The aberration criteria obtained are tabulated. In the case of Rayleigh's pupil, the same criteria are always smaller than Gaussian pupil, thus the latter is superior to the former.

  • PDF

Performance Criterion of Bispectral Speckle Imaging Technique (북스펙트럼 스펙클 영상법의 성능기준)

  • 조두진
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.28-35
    • /
    • 1993
  • In the case of an imaging system affected by aberrations which are not precisely known, the effect of aberrations can be minimized and near-diffraction-limited images can be restored by introducing artificial random phase fluctuations in the exit pupil of the imaging system and using bispectral speckle imaging. In order to determine the optimum value of the correlation length for Gaussian random phase model, computer simulation is performed for 50 image frames of a point object in the presence of defocus, spherical aberration, coma, astigmatism of 1 wave, respectively. In terms of the criterion of performance, the FWHM of the point spread function, normalized peak intensity, MTF and visual inspection of the restored object are employed. The optimum value for the rms difference $\sigma$ of aberration on the exit pupil in the interval of Fried parameter ${\Upsilon}_0$ is given by 0.27-0.53 wave for spherical aberration, and 0.24-0.36 wave for defocus and astigmatism, respectively. It is found that the bispectral speckle imaging technique does not give good results in the case of coma.

  • PDF

Implementation of 2-D Incoherent Imaging using Hilbert Transform based on Two-Pupil Optical Heterodyne Scanning System (Two-Pupil 광학 헤테로다인 스캐닝 시스템 기반의 힐버트 변환을 활용한 2-D 인코히어런트 이미징 구현)

  • Kyung, Min-Gu;Doh, Kyu-Bong
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.240-246
    • /
    • 2012
  • The Hilbert transform, which has been hitherto discussed in coherent imaging, is for the first time investigated in the context of incoherent imaging. Because the Hilbert transform of the information is superposed coherently with the original light field. We present a two-pupil optical heterodyne scanning system and analyze mathematically the design of its two pupils such that the optical system can perform the Hilbert transform on incoherent objects. In this paper, we review and formulate the definition of an analytic signal of a function and from which we can obtain the Hilbert transform of the function. and we analyze the design of pupils so as to obtain the Hilbert transform and show some 2-D simulations. Computer simulation results of the idea clarify the theoretical results.

Point Spread Function of Optical Systems Apodized by Semicircular Array of 2D Aperture Functions with Asymmetric Apodization

  • Reddy, Andra Naresh Kumar;Sagar, Dasari Karuna
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.2
    • /
    • pp.83-88
    • /
    • 2014
  • The simultaneous suppression of sidelobes and the sharpening of the central peak in the process of diffraction pattern detection based on asymmetric apodization have been investigated. Asymmetric apodization is applied to a semicircular array of two-dimensional (2D) aperture functions, which is a series of 'coded-phase arrays of semicircular rings randomly distributed over the central circular region of a pupil function' and is similar to that used in the field of diffractive optics. The point spread function (PSF) of an imaging system with asymmetric apodization of the discrete type has been found to possess a good side with suppressed sidelobes, whereas its bad side contains enhanced sidelobes. Further, the diffracted field characteristics are obtained in the presence of these aperture functions. Asymmetric apodization is helpful in improving the performance of the optical gratings or 2D arrays used in real-time imaging techniques.

Common Optical System for the Fusion of Three-dimensional Images and Infrared Images

  • Kim, Duck-Lae;Jung, Bo Hee;Kong, Hyun-Bae;Ok, Chang-Min;Lee, Seung-Tae
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.8-15
    • /
    • 2019
  • We describe a common optical system that merges a LADAR system, which generates a point cloud, and a more traditional imaging system operating in the LWIR, which generates image data. The optimum diameter of the entrance pupil was determined by analysis of detection ranges of the LADAR sensor, and the result was applied to design a common optical system using LADAR sensors and LWIR sensors; the performance of these sensors was then evaluated. The minimum detectable signal of the $128{\times}128-pixel$ LADAR detector was calculated as 20.5 nW. The detection range of the LADAR optical system was calculated to be 1,000 m, and according to the results, the optimum diameter of the entrance pupil was determined to be 15.7 cm. The modulation transfer function (MTF) in relation to the diffraction limit of the designed common optical system was analyzed and, according to the results, the MTF of the LADAR optical system was 98.8% at the spatial frequency of 5 cycles per millimeter, while that of the LWIR optical system was 92.4% at the spatial frequency of 29 cycles per millimeter. The detection, recognition, and identification distances of the LWIR optical system were determined to be 5.12, 2.82, and 1.96 km, respectively.

HYPERSPECTRAL IMAGING SPECTROMETER WITH A NOVEL ZOOMING FUNCTION

  • Choi Jin;Kim Tae Hyung;Kong Hong Jin;Lee Jong-Ung
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.213-216
    • /
    • 2005
  • A novel hyperspectral imaging spectrometer controlling spatial and spectral resolution individually has been proposed. This imaging spectrometer uses a zoom lens as a telescope and a focusing element. It can change the spatial resolution fixing the spectral resolution or the spectral resolution fixing the spatial resolution. Here, we report the concept of the hyperspectral imaging spectrometer with the novel zooming function and the optical design of a zoom lens as the focusing element. By using lens module and third-order aberration theory, we have presented the initial design of four-group zoom lens with external entrance pupil. And the optimized zoom lens with a focal length of 50 to 150 mm is obtained from the initial design by the optical design software. As a result, the designed zoom lens shows satisfactory performances in wavelength range of 450 to 900 nm as a focusing element in an imaging spectrometer. Furthermore, the collimator lens of the imaging spectrometer is designed through the third-order aberration correction by using an iterative process.

  • PDF

A Study for Non-paraxial Diffraction Caused by Curved Principal Planes (주요면의 만곡에 따른 비근축 회절에 대한 연구)

  • Lee, Jong Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • According to the paraxial diffraction theory, diffractions of optical systems which have the same wavelength and numerical aperture are always the same, independent of lateral magnification. But the diffractions for optical systems with different magnifications are varied due to the non-paraxial diffraction effect on the imaging of high NA optics. In this study, the non-paraxial diffraction effect is interpreted as a phenomena caused by curved principal planes. Pupil functions and modulation transfer functions of aplanatic conic mirrors are examined as a function of lateral magnification.